제20회
2020 고분자 신기술 강좌
Polymer New Technologies Course 2020
| 일시 | 2020. 10. 5(월) | 장소 | 부산컨벤션센터(BEXCO) |

초대의 글
한국고분자학회 회원 여러분, 안녕하십니까?
2020년 올해는 유행했던 코로나19 팬데믹 상황과 긴장하에 인해 많은 분들이 힘들고 어려운 시기를 보내고 있는 것 같습니다. 그럼에도 학회는 계획했던 행사들이 정상적으로 진행될 수 있도록 많은 노력을 하고 있습니다. 오는 10월에는 부산에서 고분자학회 추계 정기총회 및 학술대회를 조금간 일정으로 진행합니다. 또한 추계학술대회 기간에 맞춰 학술대회 첫날인 10월 5일에 고분자 신기술 강좌를 준비합니다. 작년에 콜로이드 및 분자조립 부문위원회가 실시된 이후 우리 학회에서는 작년부터 추계학술대회 뿐만 아니라 추계학술대회 기간에도 고분자 신기술 강좌를 진행하고 있습니다. 올해의 추계학술대회도 진행되길 희망하고기 때문에 제19회 고분자 신기술 강좌가 취소되었고, 따라서 이번에는 추계에 맞추지 못했던 강좌까지 포함해서 총 3개의 신기술 강좌를 준비하였습니다. 분자전자 부문위원장에서 주관하는 분자전자 세션은 "분자전자소재의 기초와 응용 연구"라는 제목으로, 의료용고분자 부문위원회에서 주관하는 세션은 "의생명용융을 위한 고분자 신기술", 그리고 산업계 세션에서는 최근 일본의 동상 문제로 이슈가 되었던 분야와 관련하여 "기술자료를 위한 고분자 기반 소재/부재/기기"라는 콜로이드 제목으로 신기술 강좌를 진행하고자 합니다. 특히 이번 고분자 신기술 강좌는 방역 상황에 맞춰 진행된 온라인으로 모든 부분에서 강의를 들을 수 있도록 준비하였습니다. 특히 코로나 때문에 또는 다른 이유로 부산에서 진행되는 강좌에 현장 참석은 못 하시더라도 어디서든 온라인으로 참여하실 수 있습니다.
온라인/오프라인 병행으로 진행되는 이번 제20회 고분자 신기술 강좌가 회원 여러분들에게 훌륭한 강좌가 될 수 있도록 많은 노력과 고성을 하겠습니다. 각 세션의 강좌 내용도 최근 동향까지 아우를 수 있도록 주제를 선정하였고 관련분야의 최고 전문가들로 모셔서 기초부터 응용까지 다양한 내용이 포괄될 수 있도록 하였습니다. 따라서 이번 고분자 신기술 강좌는 관련 산업계, 학계 및 연구소 등에 계시는 회원님들이 많은 도움이 되리라 확신합니다. 부디 회원 여러분들의 많은 참여와 성원 부탁드립니다. 힘든 시기에 모든 회원님의 건강과 안녕을 기원합니다.

일정

강좌 주제 I : 분자전자소재의 기초와 응용 연구
12:30-
13:00-14:00 공학고분자 분자도핑의 기초와 응용
김준성 | 아주대학교
14:00-15:00 유기생체전자 기술의 기초 및 최신 동향
문영환 | GIST
15:00-16:30 휴식
15:10-16:10 플렉시블 휴먼에어 소재 및 최신 연구 동향
이은균 | DGIST
16:10-17:10 고기능성 고분자 백식정보 소재의 기초 및 최신 전략
허병호 | 부산대학교

강좌 주제 II: 의생명용융을 위한 고분자 신기술
12:30-13:00 Functional Biomaterials for Biomedical Applications
완정근 | 차동과학대학교
14:00-15:00 조직공학을 위한 생체재료 표면 개발기술
신호화 | 한국대학교
15:00-16:30 휴식
15:10-16:10 Polymer-Based Drug and Nitric Oxide Delivery
김현홍 | POSTECH
16:10-17:10 조직공학에서의 3D 비아이 프릴링 기술을 이용한 의학적 응용
허동녕 | 경북대학교

강좌 주제 III: 기술 자립을 위한 고분자 기반 소재/부재/기기
12:30-13:00 프로테인스테이트의 작용 원리와 기술 동향
이진균 | 인하대학교
14:00-15:00 차세대 디스플레이용 접합장착소재의 최신 연구 동향
박지원 | 세미컨텍스
15:00-16:30 휴식
15:10-16:10 고급화 고분자 개발 및 응용
유남호 | KIST
16:10-17:10 고분자형 플라스마드 응용 및 향후 전망
김경훈 | 망원대학교
참가신청 및 등록안내

- 등록비
 - 일반: 25만원, 학생: 20만원

일반 등록자에 한해 2020년 추계학술대회(10월 5일~8일) 참가비(단, 부산BEXCO)에 참가하실 수 있습니다(명절 교환관 지참시).

참가신청 및 등록방법: 한국고분자학회 홈페이지에서 온라인 접수 및 결제(www.polymer.or.kr)

게산서 발급을 원하시는 참가자에게는 사업자등록증 사본을 메일이나 FAX로 승부하여 주신 후 학회로 연락하여 주십시오.
FAX: (02)553-6938 / E-Mail: polymer@polymer.or.kr / Tel: (02)558-3860

참가 신청 접수 기간: 2020년 9월 17일(목)

찾아오는 길

승용차 이용시
- 주소: 경북 부산광역시 해운대구 APEC로 55
- 주차 이용: 승용차, 소형차(승합차 25인승 미만), 화물차(2.5t 미만)인 경우, 10분당 300원, 1일 주차기준 15,000원입니다.

기차 이용시(부산역)

<table>
<thead>
<tr>
<th>교통수단</th>
<th>행사장까지 이동방법 및 소요 시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>택시</td>
<td></td>
</tr>
<tr>
<td>버스</td>
<td>[김해버스 100] 버스로 정품장에 택시 정거장에서 격차, 1.800원, 약 30분 소요</td>
</tr>
<tr>
<td>지하철</td>
<td>특급 1호선 홍산역 출구 2호선 홍산역 출구에서 지하철 1호선, 1.200원, 약 30분 소요</td>
</tr>
<tr>
<td>지하철</td>
<td>일반호 1호선 홍산역 출구 2호선 홍산역 출구에서 지하철 1호선, 1.400원, 약 45분 소요</td>
</tr>
</tbody>
</table>

항공 이용시(김해국제공항)

<table>
<thead>
<tr>
<th>교통수단</th>
<th>행사장까지 이동방법 및 소요 시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>택시</td>
<td>김해국제공항 정업차고에서 택시 정거장에 격차, 26.67km, 약 45분 소요</td>
</tr>
<tr>
<td>공항</td>
<td>라무진</td>
</tr>
<tr>
<td>버스</td>
<td>[김해버스 307] 김해국제공항 정업차고에서 김해시내버스 307 출구, 1.200원, 약 28분 소요</td>
</tr>
<tr>
<td>지하철</td>
<td>[김해버스 31] 정업차고에서 지하철 출구, 2호선 홍산역 출구, 1.200원, 약 55분 소요</td>
</tr>
</tbody>
</table>

고속/시외버스 이용시

<table>
<thead>
<tr>
<th>터미널</th>
<th>교통수단</th>
<th>행사장까지 이동방법</th>
<th>요금 및 소요 시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>부산 중합버스터미널</td>
<td>택시</td>
<td>부산중합버스터미널에서 택시 정거장에서 격차, 16.73km, 약 40분 소요</td>
<td></td>
</tr>
<tr>
<td></td>
<td>버스</td>
<td>[김해버스 1002] 노포동부산중합버스터미널 정업장 출구에서, 1.700원, 약 40분 소요</td>
<td></td>
</tr>
<tr>
<td>지하철</td>
<td>특급 1호선 노포역에서 3호선 홍산역 출구, 1.400원, 약 50분 소요</td>
<td></td>
<td></td>
</tr>
<tr>
<td>사상 시외버스터미널</td>
<td>택시</td>
<td>사상시외버스터미널에서 택시 정거장에서 격차, 23.08km, 약 55분 소요</td>
<td></td>
</tr>
<tr>
<td></td>
<td>버스</td>
<td>[김해버스 31] 서부시외버스터미널 정업장 출구에서, 1.200원, 약 55분 소요</td>
<td></td>
</tr>
<tr>
<td>지하철</td>
<td>부산 2호선 사상역 출구에서 지하철 출구, 2호선 홍산역 출구, 1.400원, 약 45분 소요</td>
<td></td>
<td></td>
</tr>
<tr>
<td>해운대 시외버스터미널</td>
<td>택시</td>
<td>해운대시외버스터미널에서 택시 정거장에서 격차, 3.32km, 약 10분 소요</td>
<td></td>
</tr>
<tr>
<td></td>
<td>버스</td>
<td>[김해버스 1001] 해운대시외버스터미널에서, 1.700원, 약 10분 소요</td>
<td></td>
</tr>
<tr>
<td>지하철</td>
<td>부산 2호선 해운대역 출구에서 지하철 출구, 2호선 홍산역 출구, 1.100원, 약 10분 소요</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
강좌 주제 I: 전기전자용 첨단소재 기술 동향

1. 공학고분자 분자도형의 기초화 응용

2. 유기생체전자 기술의 기초 및 최신 동향

3. 플레시블 투명전극 소재 및 최신 연구 동향

4. 고가능성 고분자 박막층 socio의 기초 및 최신 전력

강좌 주제 II: 의생명응용을 위한 고분자 신기술

1. Functional Biomaterials for Biomedical Applications

2. 조직 공학을 위한 생체재료 표면 개질 기술

요약 문단:

브로너 분자도형 기초화 응용

2000년 노벨 화학상 수상 이후 공학고분자는 기초화의 전환세계로 확산을 하였고, 특히 분자 도형을 통해 전기성 고분자에 대한 연구 활발화가 진행되었다. 그 결과 도시고 분자도형 기초화를 위한 새로운 전기성 소재들이 유기기반전도체로도 인기를 얻고 있으며, 특히 공학고분자는 전기성 분자도형의 기초화를 통해 전기성 분자도형을 효율적으로 설계하고, 신속하게 반응으로 확장될 수 있기 때문에 보편적 전기성 소재에 매우 유리하다. 본 강강에서는 이러한 공학고분자 분자도형 메커니즘과 도형을 통해 개발된 전기성 분자도형을 공학고분자 기초와 함께 반응적으로 활용할 수 있는 현장기술적 전기성 분자도형의 기초와 선택_Do 한장 하자.
3. Polymer-Based Drug and Nitric Oxide Delivery

‘Herein, we designed self-assembled nanoparticles for paclitaxel (PTX) delivery toward tumor cell. Self-assembled nanoparticles were constructed through host-guest chemistry between PTX and β-cyclodextrin (CD). CD and PTX are covalently conjugated with poly (maltic anhydride) that provide higher solubility of nanoparticles. This inclusion complex showed enhanced antitumor effect than PTX. Modulating the size and structure of the assembled structure using the sequence-specific hybridization and dehybridization of pH-sensitive functional DNA known as the i-motif is a potential strategy. According to pH changes, the structure of functional DNA was transformed dynamically, leading to a release of the cargo, thus achieving the specific delivery of siRNA or an anticancer drug, doxorubicin (DOX). Taking advantage of the intrinsic optical properties of Au nanoparticles, which depend on their size, a cytotoxic rich i-motif sequence was employed for intracellular pH-sensitive dual dissociation and subsequent aggregation of the DNA-Au nanomachine, enabling anti-cancer drug release and photothermal ablation upon irradiation with infrared light.

In this study, we also developed novel nitric oxide (NO) delivery system using catecholamine and diazeniumdiolates. Simple two-step reactions comprising catecholamine and diazeniumdiolates enable virtually any material surfaces to release NO with appreciable storage. We also prepared NO-scaenivating hydrogel for alleviating inflammatory disease such as rheumatoid arthritis (RA). We developed a NO-responsive macro-sized hydrogel by incorporating an NO-cleavable crosslinker (noclocoll, NOCLC); we further evaluated the effectiveness of the NO-scaenaving nano-sized hydrogel for treating RA.

4. 조직공학에서의 3D 바이오 프린팅 기술을 이용한 의학적 응용

3D 바이오 프린팅 기술은 인체의 복잡한 조직과 기관의 구조를 정밀한 시계로 구현함으로써, 환자 맞춤형 치료를 할 수 있다는 점에서, 3D 바이오 프린팅은 민감한 조직과 세포의 생물학적, 약화에 의한 응용이 진행되고 있다. 이 연구는 바이오 프린팅을 이용한 3D 바이오 프린팅 기술과 생명공학의 합동으로 이루어지는 것으로, 3D 바이오 프린팅 기술의 핵심 소재인 바이오 인조의 엔지니어링, 생물명성, 세포주사, 세포합성, 폐쇄형 혈관조직 조립으로 이루어지는 3D 바이오 프린팅 기술에 발전가능성이 있다. 따라서, 바이오 프린팅이란 새로운 생명학적 특성 및 성장 속도를 가진 바이오 프린팅 기법의 개발에 있어, 세포학적 새로운 기술 및 기법을 개발하고자 한다. 본 강의에서는 바이오 프린팅 기법의 개발에 있어 3D 바이오 프린팅 기법의 중요한 기술을 논의하고자 한다.

○ 강좌 주제 III: 기술 자립을 위한 고분자 기반 소재/부품/장비

1. 포트레지스의 작용 원리와 기술 동향