# $\bigcirc$

1.

, . , , ,

1983

1988

1988

, EL, PDP , waveguide . per formance . 기,

Gio

가

KAIST()) E - Polymer Lab.



( )



1990 KAIST 1996 KAIST () 1996 1999 2000 2000



( )

Functional Polymers as Thin Film Electronic Materials

(Jae - Geun Park, Hyun - Dam Jeong, Changho Noh, and Myungsup Jung, E - Polymer Lab., Samsung Advanced Institute of Technology, San 14 - 1, Nongseo - ri, Kiheung - eup, Yongin - shi, Kyungki - do, Korea)

## Technology Roadmap

1.

| Year of<br>first<br>shipment | 1996         | 1999           | 2001           | 2003           | 2006           | 2009          |
|------------------------------|--------------|----------------|----------------|----------------|----------------|---------------|
| Bits / chip                  | 64           | 256            | 1 G            | 4G             | 16G            | 64G           |
| Feature<br>size(nm)          | 210          | 180            | 150            | 130            | 100            | 70            |
| ( )                          | 512          | 2,048          | 8,192          | 32,768         | 131,072        | 524,288       |
| Lithogra-<br>phy             | l<br>(365nm) | KrF<br>(248nm) | KrF<br>(248nm) | KrF<br>(248nm) | ArF<br>(193nm) | F2<br>(157nm) |

- 1 가 positive resist, negative resist . positive resist 가
- i line (365 nm) KrF(248 nm) positive type resist resist , ArF(193 nm) F<sub>2</sub>(157 nm)

.

- 2.2 Novolak DNQ Resist (g, i-line Resist)
- LCD KrF i-line PR(365 nm)가 . i - line resist g-line resist novolak DNQ (diazo - napthaquinone) resin (inhibitor) . DNQ 가 PAC(photo acid compound) 2 novolak resin



1. Photoresist

12 5 2001 10

.

2005

가

가

ppt

3

100 nm

4

LSI

16

4 GDRAM

50 nm

2010 가

optical

,

interconnection

.

2.1

GDRAM

가

2.

130 nm

.1

, X

1

가

LSI



2. i-line resist

DNQ 가 가 resist 가 가 (wolf rearrangement) 가 . DNQ 가 resin 100 가 DNQ 가 가 3,000 - 4,000 . Novolac - DNQ

가 . i - line photoresist resin , PAC . i - line PR 250 nm device 가

2.3 (Chemically Amplified Resist, CAR)

256 MDRAM litho graphy KrF(248 nm) eximer laser가 100 nm 가 device ArF laser 가 deep UV (DUV) g, i-line novolak -DNQ resist DUV laser g, i - line 가 CAR (chemically amplified resist)가 IBM Ito deep UV .<sup>2</sup> i - line PR PR 가 CAR 3 2 (Photo Acid Genera tor, PAG)가 가 가 100% 가 가 KrF lithography novolak - DNQ absorbance가 KrF, ArF  $F_2$ 1) High transparency 2) High dry etch resistance 3) Good adhesion to substrate 4) Conventional developer 가



3. T-BOC type chemically amplificated resist(KrF )

PR 2.3.1 KrF Photoresist 3) KrF PR 180 nm 가 footing undercut 110 nm 가 device 가 PR 가 . i - line 가 novolak formulation PR DNQ 248 nm maker know - how 가 3 poly(p - hydroxy . 가 KrF PR styrene)(PHST) PHST t - BOC(t - butoxycar acid labile bonyl) KrF PR 가 acid labile , acetal, carbonate, ester acid labile 가 PHST hybrid . protected PHST PAG . 가 가 2.3.2 ArF Photoresist 248 nm ArF PR PAG KrF PR poly(hydroxy styrene) acid ArF(193 nm) labile 가 . base polymer가 . 100% 193 nm 2 etching alicyclic side chain backbone 3,4 base resin 2 ArF base resin 1) ) ( 5,6,7 Т ArF PR 100 ~70 nm (T - topping) device . etching , 2) 가 PR hard mask delay (post exposure delay 가 ) .

2. ArF

|            | Acryl backbone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alternating copolymer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Multicyclic<br>Backbone |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Base Resin | -CH CHB CHB<br>OC O<br>HICCH OC O<br>HICCH OC O<br>HICCH O<br>OC O<br>HICCH O<br>OC O<br>HICCH O<br>OC O<br>HICCH O<br>OC OC OC OC<br>OC OC OC OC OC<br>OC OC OC OC OC OC<br>OC OC OC OC OC OC OC<br>OC OC OC OC OC OC OC OC<br>OC OC O | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ |                         |
|            | Fujitsu, NEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lucent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JSR, Goodrich           |
|            | etching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | etching                 |

가

가

2.3.3 F<sub>2</sub> Photoresist F<sub>2</sub> laser PR 157 nm photon energy (7.9 eV)193 nm 8 130~180 nm ( 10 ~7 eV) valence band electronic chemical bonds C-H (bonding energy, 7.5 eV), C=O (7 eV)bonding C-F(10 eV) bonding 가 F<sub>2</sub> laser 가 C - F bonding dilution 157 nm 가 가 acid resist phenol carboxylic

4 fluorinated alcohol 7 · .9 3 157 nm . Siloxane(Si - O bonds) back bone 7 · 157 nm



**4.** 1<sub>2</sub>

3.

157 nm (A)





100 nm

ArF F<sub>2</sub> laser photoresist,

, ア・、、



| Polymer                                                 | A<br>( <i>m</i> m <sup>-1</sup> ) | Tp* (A=0.4)<br>(nm) |
|---------------------------------------------------------|-----------------------------------|---------------------|
| Poly(hydrosilsesquioxane)                               | 0.06                              | 6667                |
| Poly(dimethylsiloxane)                                  | 1.61                              | 248                 |
| Poly(phenylsiloxane)                                    | 2.68                              | 149                 |
| Fluorocarbon, 100% fluorinated                          | 0.7                               | 571                 |
| Hydrofluorocarbon, 30% fluorinated                      | 1.34                              | 298                 |
| Partially esterified hydrofluorocarbon, 28% fluorinated | 2.6                               | 154                 |
| Poly(vinyl alcohol), 99.7%                              | 4.16                              | 96                  |
| РММА                                                    | 5.69                              | 70                  |
| Poly (norbornene)                                       | 6.1                               | 66                  |
| Poly(vinyl phenol)                                      | 6.25                              | 64                  |
| Poly(adamantyImethacrylate)                             | 6.73                              | 59                  |
| Poly(vinyl naphthalene)                                 | 10.6                              | 38                  |

\*: 0.4 optical density coating



, 기 Sealing, packaging, die bonding, wire bonding soldering 200

12 5 2001 10

가

647

4. Applications of Liquid PI & PSPI For Electronic Devic<sup>14</sup>

| Classification |                 | Location              | Purpose                                         | Application                                                                |  |
|----------------|-----------------|-----------------------|-------------------------------------------------|----------------------------------------------------------------------------|--|
|                | Buffer coat     | On the passivation    | Surface protection                              | IC, LSI, VLSI                                                              |  |
|                | Passivation     | Surface of Device     | Relief of mechanical stress                     |                                                                            |  |
| Protection     | Junction coat   | PN junction           | Prevention of contamination                     |                                                                            |  |
|                | - ray shielding | On the passivation    | Prevention of soft<br>errors for memory devices |                                                                            |  |
| Interlay       | er dielectric   | Between wire and wire | Insulation between<br>wire and wire             | IC,LSI,VLSI<br>Multi - chip module<br>Thin film thermal /<br>magnetic head |  |



mobile 1 ppm

Multi level coverage



Die bonding, wire bonding, soldering , stress crack ( )

 $\mathsf{EMC},\ \mathsf{SiN},\ \mathsf{SiO}_2$ 

crack amino silane

.

4 , buffer coating layer

3.2.1 Buffer Coating Buffer layer 6 device passivation layer 2~10 **m**m 가 buffer layer chip stress 7 filler stress device 가 passivation layer crack alu minum .15 Buffer coating chip wire bonding window open 5 100 *m*m hole line



6. Cut-away plastic package showing the exposed polyimide.

.



7. Filler - induced stress.



8. Interlayer Dielectric Application of Polyimide.

## 가

3.2.2

CSP(chip size package), WLP(wafer level package)

## (10~20 **m**m)

8 device 가 . via - hole

## . 3.2.3 Alpha-ray Shielding

DRAM LSI(large-scale integrated)memory device 가 가 - Ray particle soft error 가 . - Ray particle uranium

가 thorium - ray particle 7 MeV 가 - ray particle 30~40 μm , device design molding resin 10 µm 15 가 3.3 1971 Kerwin Gold -16 rick polyamic acid chromium salt 가

## 1979 Siemens Rubner ,<sup>17</sup> Asahi Chemical, Du Pont, OCG license negative positive

negative 3.3.1 Negative Working System

- 1) Siemens backbone 기 , 9
- 가 9 가
  - 가 . 가 가
- 가, , , Asahi Chemical, Du Pont, OCG license
- "PIMEL", "Pyralin PD", "Probimide 300" .<sup>14</sup> 2)

Toray

12 5 2001 10



9. Chemical principle and processing steps of ester-type photosensitive polyimide.<sup>14</sup>



10. Ionic bonded type photosensitive polyimide precursors.  $^{\rm 14}$ 

"Photoneece"

10 polyamic acid acryloyl 가 3

, 가 , 가 .<sup>14</sup> **3.3.2** Positive Working System Negative positive 가 가

, 2.38 wt% tetramethyl am monium hydroxide(TMAH) ( )





#### negative

|          |               | •    |  |
|----------|---------------|------|--|
| positive | 가             | line |  |
| nole     |               | 3    |  |
| negative |               |      |  |
|          | dust particle |      |  |
| 가        |               |      |  |

positive , Sumitomo Bakelite, HD micro -

system . Positive 가

i - line photoresist 11 novolak hydroxy diazonaphtoquinone(DNQ) blocking

DNQ가 indencarboxylic acid 가

DNQ polyamic acid

novolak hydroxy

가

polyamic acid



12. Chemical principle of HD-8000.



13. Chemical principle of Sumotomo Bakelite's  $\mathsf{PSPBO}^{18}$ 

Hitachi Chemical Du Pont Liquid Polyimide HD Microsystems "HD - 8000" polyamic acid 12 methyl ethyl protecting hydroxy 가 diamine polyimide precursor DNQ

· Sumitomo Bakelite polybenzoxazole(PBO) PBO "CRC - 8000" ( 13). PBO precursor o - hydroxy polyamide NQD 7ł photo -

resist

2) (Chemical amplification type) KrF photoresist

polyamic acid 가 side chain t - BOC acetal acid - labile group (photo acid generator) UV t - BOC acetal 가 group 14 t - BOC group polyim -. deprotection mechanism ide precursor soluble polyimide hy acid - labile group droxy imide ring precursor UV

## 3.4

. 가 , LCD .



(),()

가 가



14. Deprotection reaction of t-BOC protected polyimide procursor.<sup>14</sup>

12 5 2001 10

### device

4.1

data

가

interconnection



DRAM

gate delay interconnection RC 19 delay 15 device가 shrink , gate delay RC delay 가 , RC delay 가 . Interconnection (metal line), (insulating layer)

RC delay

(RC~ k, : , k:



가 device shrink ( )가 device shrink (data processing speed) , MPU(micro - processor

unit, SoC(system - on - chip) )

device architecture

4.

(LSI)

dielectric constant material, (low low - k) MPU



Roadmap

5.



6. 2.5 ~ 3.0 (

| (spin-coating) | SiLK (Dow Chemical, 2.6)<br>BCB (Dow Chemical, 2.7)<br>FLARE (Honeywell, 2.8) | FOx (Dow Corning HSQ, 3.0)<br>HOSP (Honeywell MSQ, 2.6)<br>JSR (LKD - T200, 2.6)<br>日立化成 (HSQ - R7, 2.8) |
|----------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| (CVD)          | Parylene (2.5)<br>- C:H(F) (2.2 - 2.7)                                        | Black Diamond (AMT), 2.7 - 3.0)<br>CORAL (Novellus, 2.7 - 2.8)                                           |

)

| ).<br><i>m</i> Ω-cm | 2.7 <i>m</i> Ω-cm<br>Cu | AI   | 1.7      |              | roadmap           | .20   |          |
|---------------------|-------------------------|------|----------|--------------|-------------------|-------|----------|
| (                   | , low - k)              |      | RC delay | 3.4 fluorina | ted silica glass( | SiOF) |          |
|                     |                         |      |          | chip         |                   |       | 2.5 -    |
|                     |                         | 가    |          | 3.0          |                   |       |          |
|                     | ,                       | (LSI | maker)   | (56),        |                   |       | (process |
|                     | device                  |      | ,        | development) |                   |       |          |
|                     | Cu                      |      | 가        | scheme       |                   |       | 2        |
|                     |                         |      |          |              | chip              |       |          |
|                     |                         |      | 가        |              |                   |       |          |
|                     |                         |      |          |              | 1.8 - 2.3         |       |          |
|                     |                         |      |          | 7            | ŀ.                |       |          |
| 가                   |                         |      |          |              |                   |       | 가        |
| 5                   |                         |      |          | 가            | . ,               | chip  |          |



16. Al integration scheme.

|              |          |           |             |           |          |                |               | ,                |
|--------------|----------|-----------|-------------|-----------|----------|----------------|---------------|------------------|
|              |          | Dow Co    | orning, Dow | Chemical, | n        | m              |               |                  |
| Honeywell    |          | ,JSR,日立化成 |             |           |          | por            | e engineering | 가                |
|              |          |           |             |           | k        | extendability  | CVD           |                  |
|              |          |           | 4           | 2 - 3     |          |                |               |                  |
|              | sch      | eme       |             |           | 4.3 Inte | egration Issue | 9             |                  |
|              |          |           |             |           |          | chip           | integra       | tion             |
|              |          |           | chemi       | cal vapor |          |                |               | integration      |
| deposition   | (CVD,    |           | )           | spin - on | issue)   |                |               |                  |
| ( )          |          |           | . CVD       |           | 7        | ŀ              | . ,           |                  |
| precursor    |          |           |             |           | line     |                |               | 90               |
|              |          |           |             |           |          | 30             | 4.0           | SiO <sub>2</sub> |
|              | ,        |           |             |           |          |                |               | .,               |
|              |          |           |             |           |          |                | 가             |                  |
|              |          | process   | engineer    | material  | 가        |                | ,             |                  |
| engineer가    |          |           |             |           |          |                |               |                  |
| 2.0          |          |           | 가           | (k ex-    | 16       | AI (           | )             | intercon -       |
| tendability) |          |           |             | . ,       | nection  |                | integration   | scheme           |
| precursor s  | solutior | (         | )           |           |          | . AI           |               | ,                |
|              | spin -   | on        |             |           |          |                | (             | 16 (a),(b)).     |

7.

| Property                                   | Techniques                             | Property Requirement<br>(Rev. 0 target)                                                              |  |  |
|--------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Dielectric Constant                        | CV technique (MIS, MIM dot structure)  | Minimum dissiaption factor                                                                           |  |  |
| Dielectric Breakdown                       | IV technique ((MIS, MIM dot structure) |                                                                                                      |  |  |
| Thermal Stability                          | TGA, TDS, thermal cycling              | 1 % weight loss in $N_2$ (>400 )                                                                     |  |  |
| Adhesion                                   | Tape pull, modified - edge lift - off  | Pass tapev test<br>- dielectric to dielectric<br>- metal to dielectric<br>- dielectric to dielectric |  |  |
| Mechanical Property<br>(hardness, modulus) | Nanoindenatioon                        |                                                                                                      |  |  |
| CTE (in - plane)                           | Dual bending beam                      | < 50 ppm / @ 200                                                                                     |  |  |
| Stress                                     | Bending beam                           | - 1.0E9 ~ 1.0E9 dyne/cm2                                                                             |  |  |
| Moisture uptake                            | Quartz - crystal microbalance, FT - IR | < 1% @ 100% RH                                                                                       |  |  |

|                    |                 |                                    |                  | (via)                | S                | iO <sub>2</sub> | PR        |            |
|--------------------|-----------------|------------------------------------|------------------|----------------------|------------------|-----------------|-----------|------------|
| W                  | (               | )                                  | (                | 16 (c)).             | O <sub>2</sub>   | plasma          |           |            |
|                    |                 | W                                  |                  |                      |                  | H₂O가            | as        | hing dam - |
| (CMP)              |                 | AI                                 | /                |                      | age가             |                 | フ         | ŀ          |
| AI                 | inter           | connection                         |                  |                      | etchant          | radical         |           |            |
| scheme             |                 |                                    | 가                |                      |                  | via             |           | ash -      |
| (film pr           | operty          | requiremer                         | ıt)              |                      | ing damage       | e               | 가         |            |
| 400                | AI              |                                    | SiO <sub>2</sub> | 가                    | ,                |                 |           |            |
|                    | 가               |                                    |                  | CVD SiO <sub>2</sub> |                  |                 | 가         |            |
|                    | ·               |                                    |                  | <b>- -</b>           |                  |                 |           | 가          |
| フ                  | ŀ               |                                    | (stress          | mismatch)            |                  |                 | line      |            |
|                    |                 |                                    | `.               | ,                    |                  | 가               |           | . Cu       |
| via                |                 |                                    |                  |                      |                  |                 | integrati | ion issue  |
|                    |                 | hardness, r                        | nodulus, to      | ughness              |                  | AI              | -         |            |
|                    |                 |                                    |                  |                      |                  | via             |           |            |
|                    | 가               |                                    | (pro             | perty re-            |                  |                 |           |            |
| quireme            | ent)            | 7                                  |                  |                      | integration      | scheme          | 가         |            |
|                    | via             |                                    |                  |                      | 4.4              | 2.5 - 3.0       |           |            |
| (ashing            | )               | via                                |                  |                      | 90               |                 | 3.5 C     | VD SiOF    |
|                    | ,               |                                    |                  |                      | 3.0              | FOx (Dow        | Corning   | hydrogen   |
|                    |                 |                                    |                  | . SiO <sub>2</sub>   | silsesquiox      | kane )가         |           |            |
|                    |                 | $CF_4$                             | etchan           | ıt                   | chip             |                 |           |            |
| SiF <sub>4</sub>   | CO <sub>2</sub> | 가                                  |                  |                      | SiO <sub>2</sub> |                 |           |            |
| via기               | ł               |                                    |                  |                      |                  |                 |           |            |
| SiO <sub>2</sub> + | - CF4           | CO <sub>2</sub> + SiF <sub>4</sub> |                  |                      |                  | 4               |           |            |
|                    | -               | 7 L                                |                  |                      | 2.5 - 3.0        | I               |           |            |
|                    | , ,             |                                    |                  | otob                 | I                |                 | black di  | Alvi I     |
| process            | ;               | ≥r vid                             |                  | , etch               | ,                | 0 10 000        | DIACK UI  |            |



4.4.1 Poly(silsesquioxane) Poly(silsesquioxane) spin - on 21 trialkoxysilane . 가 poly (methylsilsesquioxane) (MSQ, e.g. Honeywell Accuspin T - 18) poly(hydrido - silsesquioxane) (HSQ, e.g. FOx) trifuctional . poly(silsesquioxane) 가 가 17). Cage structure ( 가 HSQ 350

stress 가 3.0 . Modulus 9.5 GPa 12.5 GPa 가 , HSQ (

) MSQ HSQ HSQ, MSQ 4.0 SiO<sub>2</sub> 가 integration 가 가 Si - H, Si - CH<sub>3</sub> 가 4.4.2 SiLK SiLK aromatic thermosetting 2.65

6

Dow Chemical

<sup>22,23</sup> 1995

(specific performance target) mo deling 1996 (specific polymer composition) 4 1997 SiLK semiconductor dielectric . 2000 4 , IBM SiLK 0.13 mm Cu device 30% 5 , Dow Chemical IBM Cu/low - k 가



k extendability . 60 . cyclopentadienone acetylene crosslinked polyphenylene

(

18). Polyphenylene

가 wafer 633 nm SiLK 1.628 2.65 , orientational polarization 가가 SiLK 가 nonpolar structure 가 가 . SiLK silicate Hardness modulus 0.62 M Pa.m<sup>1/2</sup> fracture toughness (silicate) 2

polymer





18. Cyclopentadiene acetylene - substituted monomer crosslinked polyphenylene

SiLK PR etch SiLK SiO<sub>2</sub> hardmask silicate fracture toughness . 가 shear stress 4.5 1.8 - 2.3 1 가 가 ( IBM ). 2000 4 SiLK integration system LSI ( ) 2.0 , integration 가 1 ,

가 가 . 4 2.0 7 2.0 2.0 TEOS precursor xerogel (e.g., Honeywell Nanoglass) Nanoglass (open pore) integration 7

(Porogen - templated ap proach). (network - forming) porogen nanophase separation . porogen



poroegn . network (matrix) k<sub>1</sub> , k

$$k = k_1 \times V_1 + k_{air} \times V_{air}$$
$$= k_1 \times V_1 + 1.0 \times V_{air}$$

V<sub>1</sub> V<sub>air</sub> matrix .

Porogen templated 가 nm 가 . , 가 nm nm 가

. porogen compatibility design . 기 inorganic

- polycarprolactone po regen 2.0 .<sup>24</sup> 30 50 pore7} closed pore system . Polynorbonene porogen
- 4.6 inter connection RC delay .

chip 90 가 , 2.5 - 3.0 1 2.0 . chip . design ,

2.0 porogen compatibility



- 2000 SIA(Semiconductor Industry Association) Technology Roadmap, http://public.itrs.net/
- H. Ito and C. G. Wilson, *Polymer Eng. Sci.*, 23, 1012 (1983).
- S. A. MacDonald, N. J. Clecak, C. G. Wilson, and S. J. Holms, *Proc. of SPIE*, 1466, 2 (1991).
- 4. K. Asakawa, T. Ushoroguchi, and M. Nakase, *Proc. of SPIE*, 2438, 563 (1995).

5. M. Takahashi, S. Takechi, Y. Kaimoto, I. Hanyu,

N. Abe, J. Photopolym. Sci. & Technol., 7(1), 31 (1994)

- R. D. Allen, G. M. Wallraff, R. A. Dipietro, D. C. Hofer, and R. R. Kunz, *J. Photopolym. Sci. Technol.*, 7(3), 507 (1994).
- 7. K. Nakano, K. Maeda, S. Isawa, T. Ohfuji, and E. Hasegawa, *Proc. of SPIE*, 2438, 433(1995).
- 8. R. R. Kunz, et al, Proc. of SPIE, 3678, 13 (1999).
- K. Patterson, M. Yamachika, R. Hung, C. Brodsky, S. Yamada, M. Somervell, B.Osborn, G. Dukovic, J. Byers, W. Conley, and C. G. Willson, *Proceedings of SPIE*, 3999, 365(2000).
- 10. S. Irie, S. Shirayone, and S. Mori, *J. Photopolym. Sci. & Technol.*, 13(3), 385 (2000).
- 11. K. MuKai and A. Saiki, *IEEE J. Solid State Circuits, SC-13*, 462(1978).
- K. Sato and S. Harada, *IEEE Trans, Hybrid and Packaging PHP* 176(1973).
- L. Lothman, Solid State Science and Technology, 127, 2216(1980).
- 14. K. Horie and T. Yamashita, "Photosensitive Polyimide", p. 233, Lancaster Basel, 1995.

- P. Cheang, L. Christensen, and C. Reynaga, Surface Mount Technology Seminar(1996).
- R. E. Kerwin and M. R. Goldrick, *Polymer Eng. Sci.*, 11, 426(1971).
- R. Rubner, H. Ahen, E. Kuhn, and K. Kolodziej, *Photogr. Sci. Eng.*, 23(5), 303(1979).
- 18. KRI Report, Japanese R & D Trend Analysis, 5, 112(1999).
- M. T. Bohr, *IEEE international Electron Device Meeting*, p. 241, 1995.
- 20. Industry Assocaiatoion, December, 2000.
- 21. G. Maier, Prog. Polym. Sci., 26, 3 (2000).
- 22. "Process ", , September, 2 2000.
- 23. S. J. Martin, and J. P. Godschalx, et al., *Advanced Materials*, 12, 1769(2000).
- C. H. Hawker and J. L. Hendrick, et al., "Supramolecular Approaches to Nanoscale dielectric foams for Advanced Microelectronic Devices", *MRS Bulletin*, p. 54, April, 2000.
- A. M. Padovani and H. D. Jeong, et al., "LOW k, Porous Methylsilsesquioxe for Interlevel Dielectric Applications", *MRS Spring, Meeting* April, 2001.