X -

3 - 100 nm

. 가 .

2.

가 가 , **1**

1992 () 1994 () 2000 () 1994 SK

Small Angle X-ray Scattering and Its Application to Polymers

Huvis PSF Gr (Bong Sup Kim, Huvis, R & D Center, PSF Gr, Deokjin, Jeonju 561 - 720, Korea) SK (Jungbum An, SK Chemicals, R & D Center, IT Lab., 600, Jungja 1 - dong, Changan - ku, Suwon 440 - 745, Korea)

12 6 2001 12

1.

				(R _g)
(R)			$(3/5)^{1/2} R$
	(a, a,	wa)	$a[(2 + w^2)/5]^{1/2}$
(R,	H)		$[(R^2/2) + H^2/3)]^{1/2}$
(2H)			H/3 ^{1/2}
(R)				R/2 ^{1/2}
(2a ,	2b,	2c)	$[(a^2+b^2+c^2)/3]^{1/2}$

3. Fankuchen

2 (b) $\tan\alpha = R_0^2/3 = \alpha$ α 가 $\tan \alpha = \alpha$) $R_0 = (3\alpha)^{1/2}$ **2** (c) $\alpha = 4\pi^2 R_0^2 / 3I^2$

 $R_0 = (I/\pi) (3\alpha/4)^{1/2}$

chen

1 In I vs. q² In I vs. e^2

Jellinek - Solomon - Fanku -

R₀가 가 , In I vs. q² R_{01}

3). \boldsymbol{K}_{n} $R_{0n} \\$ R_{01} ---> K_1 R_{02} ---> K_2

 $W(R_{0n})$

 $K_n = kW (R_{0n}) R_{0n}^{3}$

4.

5 - 10 5 (long period)

 $\Lambda_{\text{m}} = 2\pi / q_{\text{max}}$

 $q=4p\sin q/l$ 가

(correlation length)

가

, Invariant Q

 $Q = [\int I(q) q^2 dq] / [1 - (E^2 q^2 / 12)]$

Invariant

Q $F_1(1-F_1)(r_1-r_2)^2$

7. smoothing function (h(r)). (a) sigmodal-gradient model and (b) linear-gradient model.

(diffuse boundry thickness).

mixing $I(q)q^{4} - q^{2}$ 가 가 Porod (duffuse phase boun - $I(q)q^4 - q^2$ dry) Porod

density fluctuation

smoothing function , H(q) Fourier Transform (-) geomatrical thermal density fluc-. I_B(q) tuations background 7 2가

가 approximation

Sigmodal - gradient model $I_{obs}(q) = (K_P/q^4)(1 - 4p^2)s^2q^2$ - $I_B(q)$ Linear - gradient model $I_{obs}(q) = (K_P/q^4)(1 - p^2E^2q^2/3) - I_B(q)$ SAXS slit colli mation desmearing

 $\lim [I_{obs}(q)] = I_P(q)H^2(q) + I_B(q)$

Porod

1. A. Guinier and G. Fournet, "Small Angle Scattering of X - rays", John Wiley & Sons Inc., 1955.

- L. E. Alexander, "X ray Diffraction in Polymer Science", John Wiley & Sons Inc., 1962.
- 3. O. Glatter and O. Kratky, "Small Angle X-ray Scattering", Academic Press, 1982.
- 4. L. A. Feign and D. I. Svergun, "Structure Analysis by Small Angle X - ray and Neutron Scattering", Plenum Press, New York, 1987.
- P. Debye and A. M. Bueche, J. Appl. Phys., 20, 518 (1949).
- 6. M. Goldstein and E. R. Michalik, J. Appl. Phys., 26,

- 1450 (1955).
- R. S. Stein and M. B. Rhodes, J. Appl. Phys., 31, 1873 (1960).
- 8. R. S. Stein and P. R. Wilson, *J. Appl. Phys.*, 33, 1914 (1962).
- R. S. Stein, P. R. Wilson, and S. N. Stidham, J. *Appl. Phys.*, 34, 46 (1963).
- T. Hashimoto, M. Takenaka, and H. Jinnai, J. *Appl. Cryst.*, 24, 457 (1991)
- 11. G. Porod, Kolloid J., 124, 83 (1951)