(POF)

Materials for Low Loss Plastic Optical Fibers (POF)

(Dong - Yoo Kim, Ji - Eun Kim, Deug - Sang Lee, and Mi - Jeong Kim, K - JIST, Photonics Polymer Lab., 1 Orong - dong, Buk - gu, Kangju 500 - 712, Korea)

13 2 2002 4

790 nm 200 dB/km P(MMA - d8), 1983 SI - POF 100 dB/km 가 P(MMA - d8)660 3-6 가 nm 20 dB/km 1992 Keio POF .7 GI - POF가 Asahi Glass , Cytop[®] 가 50 dB/km 8 가 가 가 POF POF 가

2. POF

POF

, . PMMA

POF . Polycarbonate(PC) 가 가 가

> 2 - 5% PMMA PS PI . POF

PMMA

가 가 POF

(a₁) C-H , , , (a_v) (a_R) , -. 1 PMMA POF

.¹ 500 nm 515 nm a_v a_i R . a_i (1) a_R a_v .⁹

 $a_{\rm R} = 13 \times (633/)^4$ (1)

 $a_{\rm V}$ =total loss - $(a_{\rm R}+a_{\rm i})$ (2)

 $a_{e(PMMA)} = 1.10 \times exp(8.0 \times 10^3/)$ (3)

1

Polymer Science and Technology Vol. 13, No. 2, April 2002

,

(3)

PMMA PS			•	1 PMMA
POF가 PS	POF			
PS a _R PM	MA		4	
C-H 가			가	
РММА				가
			PS	aliphatic
aromatic C-H				
			C - I	Н
aliphatic C - H				
670 nm	PS			650 nm
PMMA		2		
PMMA C-H				.10
РММА	POF			
71				

.

1. PS PMMA

	Wavelength (nm)							
Loss Factor	PMMA			PS				
	516	568	650	580	624	672	734	784
Total Loss	57	55	126	148	129	114	446	445
IR Absorption	11	17	96	4	22	24	390	377
UV Absorption	0	0	0	11	4	2	1	0
Rayleigh Scattering	26	18	10	78	58	43	30	23
Structural Imperfections	20	20	20	45	45	45	45	45
Loss Limit	37	35	106	94	84	69	421	400

2. PMMA C-H

2 13 2002 4

С-Н 2

$$V = 1/2 \pi c \times (f/m)^{1/2}$$
 (4)

f: force constant **m**: reduced mass $(m_1m_2 / m_1 + m_2)$ c : light constant

8

가

가 . PMMA 650 nm 58 dB/km 가 . POF 3.1 가 가 aliphatic C - H 3.2 *m*m 가 overtone . 가 overtone . C - H

2. P(MMA - d8)

Loss Eastor	Wavelength (nm)				
LUSS T ACIUI	680	780	850		
Total Loss	20	25	50		
Absorption	1.6	9	36		
Rayleigh Scattering	7.5	6	4		
Structural Imperfections	10	10	10		
Loss Limit	9.1	15	40		

4 _{OH} 748 nm O-H 가 .¹⁴ 4 . OH 가 780 nm 100 dB/km, 850 nm 300 dB/km P(MMA-d8) 가

가

PTFE가 1938 가 .¹⁶

, , , , , , , , , 가

3 PFC (saturated perfluorcarbon) HC(hydrocarbon)

19 4 Teflon AF[®] Cytop[®]

Polymer Science and Technology Vol. 13, No. 2, April 2002

3. n - hexane

Property	C ₆ F ₁₄	$F(CF_2)_3 - (CH_2)_3H$	C ₆ H ₁₄
B _p ()	57	64	69
T _c ()	174	200	235
$d (g/cm^3)$	1.672	1.265	0.655
h (cP)	0.66	0.48	0.29
g (dyn cm ⁻¹)	11.4	14.3	17.9
b (10 ⁻⁶ atm ⁻¹)	254	198	150
п	1.252	1.290	1.372
е	1.69	5.99	1.89

 T_c : Critical temperature. d: Density. h: Viscosity. g: Surface tension. b: Compressibility at 1 atm. n: Refractive index. e: Dielectric constant.

Δ		
-	٠	

Resin	ETFE PVDF PVF PCTFE	PTFE PFA FEP
Resin	LUMIFLON®	TEFLON [®] AF CYTOP [®]
Elastomer	FKM AFLAS [®]	KALREZ [®]

				100
Τ _g	가	POF	フ	ŀ
	. Teflon	$AF^{\mathbb{R}}$	TFE	perfluoro -
2,2 - dimeth	yl dioxole) (PDD))	

5. Dienes

						Tg	Remarks
		()		(%)	(dL/g)	())	
$CF_2 = CFOCF_2CF = CF_2$	$(C_3F_7COO)_2$	25	24h	90	0.5	69	Tough
$CF_2 = CFO(CF_2)_2CF = CF_2$	IPP	40	20h	85	0.5	108	Tough
$CF_2 = CFO(CF_2)_3CF = CF_2$	IPP	65	20h	4	<0.1	84	Brittle
$CF_2 = CFOCF_2CF = CFCF_3$	PBIB	60	1day	13			Grease
$CF_2 = CFOCFCF_3CF = CF_2$	-	-	-	-	-	-	Unstable
$CF_2 = CFO(CF_2)_2CF = CFCF_3$	IPP, PBIB	25 - 70	2day	0	-	-	
$CF_2 = CFOCF_2CFCF_3CF = CF_2$	IPP	40	2day	40	<0.1	118	Brittle
$CF_2 = CFO(CF_2)_2CH = CH_2$	(C ₃ F ₇ COO) ₂	20	1h	>90	1	90	Tough
$CF_2 = CFOCF_2CFCF_3CH = CH_2$	$(C_3F_7COO)_2$	25	15h	81	>1.0	108	Tough
$CF_2 = CF(CF_2)_2CH = CH_2$	IPP	60	4h	40	-	120	Crosslinked
$CF_2 = CF(CF_2)_2CH = CF_2$	IPP	40	48h	5	-	27	Crosslinked

Cytop[®], (b)

PDD

 $.^{20}$ Teflon AF[®]

Boston Optical Fiber

, 21

Cytop[®] perfluoro - butenyl vinyl ether (BVE) $\frac{22}{6}$

dB/km

23

pendant

network

- T. Kaino, "Polymer optical fibers, in Polymers for lightwave and integrated optics", ed. by L. A. Hornak, chap. 1, Mercel Dekker, New York, 1992.
- 2. Y. Koike, Polymer, 32, 1737 (1991).
- M. H. Schleinitz, Int. Wire & Cable Symp., 26, 352 (1997).
- 4. T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, *Appl. Opt.*, 20, 2886 (1981).
- 5. S. Fujimoto, SPIE Proc., 799, 139 (1987).
- T. Kaino, K. Jinguji, and S. Nara, *Appl. Phys. Lett.*, 42, 567 (1983).
- 7. Y. Ohtsuka, E. Nihei, and Y. Koike, *Appl. Phys. Lett.*, 57, 120 (1990).
- 8. R. A. Darby, US Patent 3418302 (1968).
- 9. T. Kaino, Kobunshi Ronbunshu, 42, 257 (1985).
- 10. T. Kaino, *Rev. Electr: Commun. Lab.*, 32, 478 (1984).
- P. Kaisser, A. R. Tynes, and H. W. Astle, J. Opt. Soc. Am., 63, 1141 (1973).

- 12. W. Groh, Makromol. Chem., 189, 2861 (1988).
- T. Kaino, J. Polym. Sci., Part A, Polym. Chem. Ed., 25, 37 (1987).
- 14. T. Kaino, Appl. Opt., 24, 4192 (1985).
- P. R. Resnick, Poly. Prepr., Am. Chem. Soc., Div. Poly. Chem., 31, 312 (1990).
- D. P. Carson and W. Schmiegel, "Fluoropolymers", vol. A11, p. 39, Verlag Chem., Weinheim, 1988.
- A. Maciejewski, J. Photochem. Photobio., A: Chemistry, 51, 87 (1990).
- R. E. Banks, B. E. Smart, and J. C. Tatlow, "Organo Fluorine Chemistry", chap. 1, p. 58, Plenum Press, New York, 1994.
- T. M. Reed , "Fluorine Chemistry", ed. by J. H. Simons, vol. 5, chap. 2, Academic Press, New York, 1964.
- W. E. Gibbs and J. M. Barton, "Vinyl Polymerization, Kinetics and Mechanism of Polymerization Series", vol. 1, part 1, p. 59, Marcel Dekker, New York, 1967.
- 21. The International POF Technical Conference, Cambridge, MA, USA, 2000.
- L. A. Wall, "Fluoropolymers" ed. by L. A. Wall, p. 127, Wiley, New York, 1972.
- K. Oharu, N. Sugiyama, M. Nakamura, and I. Kaneko, *Peports Pes. Lab. Asahi Glass Co. Ltd.*, 41, 51 (1991).
- 24. M. Nakamura, US Patent 4897457 (1997).
- N. Sugiyama and M. Nakamura, Abstracts of 18th Symposium on Fluorine Chemistry (JPN), 37 (1993).