(POF)

1. 가 , , digital , interface, medical lighting, LAN . POF (POF) , PMMA, PS,

가 가 .²
1970 567 nm 300 dB/km poly - methylmethacrylate(PMMA) SI - POF 가 C - H

1986 ()
1988 ()
1989~ KIST
1991
1991 Univ. of Massachusettes
Lowell ()
1997 Univ. of Massachusettes
Lowell Center for Advanced
Materials (Post Doc)

2000 () 2000 2002 () 2002

2001 ()

1996 () 1998 () 2000

Materials for Low Loss Plastic Optical Fibers (POF)

(Dong - Yoo Kim, Ji - Eun Kim, Deug - Sang Lee, and Mi - Jeong Kim, K - JIST, Photonics Polymer Lab., 1 Orong - dong, Buk - gu, Kangju 500 - 712, Korea)

13 2 2002 4 195

```
790 nm
                                  200 dB/km
                P(MMA - d8)
                                             , 1983
             SI - POF
                                    100 dB/km
                                                                              가
                                            가
                                                                                      가
                   P(MMA - d8)
                                                 660
                                                                                                          POF
                                           3-6
                                    가
nm
         20 dB/km
1992
               Keio
                                                                                   가 가
           POF
                                                                                                   가
                        GI - POF가
              Asahi Glass
                                                              POF
                   Cytop®
                                          가
                             50 dB/km
가
                                                                                   (a_i)
                                            가
                                                                            C-H
                                                   가
                                                                                         (a_{v})
   POF
                                                            (a_R)
               POF
                                                                             1
                                                                                      PMMA
                                                                                                            POF
                                                                                           .1 500 nm
          가
                                                                                                             515
                                                            nm
                                                                                                             a_{i}
                                                              R
                                                                                             . ai
             2. POF
                                                                                     (1)
                                                                                                      a_{R}
                                                                      a_{v}
  POF
                                                              a_{\rm R} = 13 \times (633/)^4
                                                                                                              (1)
                                                              a_v = \text{total loss} - (a_R + a_i)
                                                                                                              (2)
                                        PMMA
                                                              a_{e(PMMA)} = 1.10 \times exp(8.0 \times 10^{3}/)
                                                                                                              (3)
                               POF
                                                                    1
         . Polycarbonate(PC)
                가
           가
                                                                  250
            가
                                                                                          C-H vibrational absorption
     가
                                                              Loss (dB/km)
                                                                  200
                                                                   150
                                                                        Electronic transition
                                                                   100
                                        2 - 5%
            PMMA
                                      PS
                                             PMMA
                                    . POF
                                                                       Scattering due to imperfections in the structure
                                                                                       550
                                                                                                 600
                                                                                 Wavelength (nm)
                                                                 1. PMMA
                                                                                 POF
```

2 C-H

.

(3)

. **1** PMMA

POF가 PS POF PS a_R PMMA 4 C-H 가 가

PS

PMMA 가 PS aliphatic aromatic C - H

. C-H

PMMA POF 가

1. PS PMMA

PMMA

	Wavelength (nm)							
Loss Factor	PMMA			PS				
	516	568	650	580	624	672	734	784
Total Loss	57	55	126	148	129	114	446	445
IR Absorption	11	17	96	4	22	24	390	377
UV Absorption	0	0	0	11	4	2	1	0
Rayleigh Scattering	26	18	10	78	58	43	30	23
Structural Imperfections	20	20	20	45	45	45	45	45
Loss Limit	37	35	106	94	84	69	421	400

2. PMMA C-H

3. POF

POF , 가 가

> 7\ C-D C-H 10⁻² , C-F 10⁻¹⁰

 $V = 1/2 \pi c \times (f/\mathbf{m})^{1/2}$ (4)

f: force constant

m: reduced mass $(m_1m_2 / m_1 + m_2)$

c: light constant

8 가

> 가 PMMA

> > 650 nm 58 dB/km 가 .

3.1 POF 가 가

3.2 mm aliphatic C - H

overtone

가 overtone

C-H

C-H, near-IR 가

13 2 2002 4

.13

3. PMMA POF P(MMA - d8)

2. P(MMA - d8)

Loss Factor	Wavelength (nm)					
Loss Factor	680	780	850			
Total Loss	20	25	50			
Absorption	1.6	9	36			
Rayleigh Scattering	7.5	6	4			
Structural Imperfections	10	10	10			
Loss Limit	9.1	15	40			

3. n - hexane

Property	C ₆ F ₁₄	F(CF ₂) ₃ - (CH ₂) ₃ H	C ₆ H ₁₄
B _p ()	57	64	69
T _c ()	174	200	235
d (g/cm 3)	1.672	1.265	0.655
h (cP)	0.66	0.48	0.29
g (dyn cm ⁻¹)	11.4	14.3	17.9
b (10 ⁻⁶ atm ⁻¹)	254	198	150
n	1.252	1.290	1.372
e	1.69	5.99	1.89

 T_c : Critical temperature. d: Density. h: Viscosity. g: Surface tension. b: Compressibility at 1 atm. n: Refractive index. e: Dielectric constant.

4.

Resin	ETFE PVDF PVF PCTFE	PTFE PFA FEP
Resin	LUMIFLON®	TEFLON [®] AF CYTOP [®]
Elastomer	FKM AFLAS [®]	KALREZ®

$-\!$	$ \begin{array}{c c} & F_2 F_2 \\ \hline & C - C \\ \hline & C \\ \hline & C \end{array} $
(a)	F ₃ C CF ₃ (b)
5. Cytop [®] , (b)	. (a) Teflon AF [®] .
$ \begin{array}{c} R \cdot \\ R \cdot $	Cyclopolymerization R k _c R Linear propagation
6.	
PDD	. ²⁰ Teflon AF [®] Boston Optical Fiber
dB/km	, 21
Cytop [®] perfluoro - b	utenyl vinyl ether (BVE)
	.23
71	pendant
가 가	가

 $(k_c \gg k_l)$.

100%

nonconjugated diene 23

1, 2,

 $(k_l=0)$

						Tg	Remarks
		()		(%)	(dL/g)	())	
CF ₂ =CFOCF ₂ CF=CF ₂	$(C_3F_7COO)_2$	25	24h	90	0.5	69	Tough
$CF_2=CFO(CF_2)_2CF=CF_2$	IPP	40	20h	85	0.5	108	Tough
$CF_2=CFO(CF_2)_3CF=CF_2$	IPP	65	20h	4	<0.1	84	Brittle
CF ₂ =CFOCF ₂ CF=CFCF ₃	PBIB	60	1day	13			Grease
CF ₂ =CFOCFCF ₃ CF=CF ₂	-	=	-	-	-	-	Unstable
CF ₂ =CFO(CF ₂) ₂ CF=CFCF ₃	IPP, PBIB	25 - 70	2day	0	-	-	
CF ₂ =CFOCF ₂ CFCF ₃ CF=CF ₂	IPP	40	2day	40	<0.1	118	Brittle
CF ₂ =CFO(CF ₂) ₂ CH=CH ₂	$(C_3F_7COO)_2$	20	1h	>90	1	90	Tough
CF ₂ =CFOCF ₂ CFCF ₃ CH=CH ₂	$(C_3F_7COO)_2$	25	15h	81	>1.0	108	Tough
$CF_2=CF(CF_2)_2CH=CH_2$	IPP	60	4h	40	-	120	Crosslinked
$CF_2=CF(CF_2)_2CH=CF_2$	IPP	40	48h	5	-	27	Crosslinked

5

가

8, 9

, PMMA 가 가 , 가

network

- T. Kaino, "Polymer optical fibers, in Polymers for lightwave and integrated optics", ed. by L. A. Hornak, chap. 1, Mercel Dekker, New York, 1992.
- 2. Y. Koike, Polymer, 32, 1737 (1991).
- 3. M. H. Schleinitz, *Int. Wire & Cable Symp.*, 26, 352 (1997).
- T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, *Appl. Opt.*, 20, 2886 (1981).
- 5. S. Fujimoto, SPIE Proc., 799, 139 (1987).
- 6. T. Kaino, K. Jinguji, and S. Nara, *Appl. Phys. Lett.*, 42, 567 (1983).
- Y. Ohtsuka, E. Nihei, and Y. Koike, *Appl. Phys. Lett.*, 57, 120 (1990).
- 8. R. A. Darby, US Patent 3418302 (1968).
- 9. T. Kaino, Kobunshi Ronbunshu, 42, 257 (1985).
- T. Kaino, Rev. Electr. Commun. Lab., 32, 478 (1984).
- P. Kaisser, A. R. Tynes, and H. W. Astle, *J. Opt. Soc. Am.*, 63, 1141 (1973).

- 12. W. Groh, Makromol. Chem., 189, 2861 (1988).
- T. Kaino, J. Polym. Sci., Part A, Polym. Chem. Ed., 25, 37 (1987).
- 14. T. Kaino, Appl. Opt., 24, 4192 (1985).
- 15. P. R. Resnick, *Poly. Prepr., Am. Chem. Soc., Div. Poly. Chem.*, 31, 312 (1990).
- D. P. Carson and W. Schmiegel, "Fluoropolymers", vol. A11, p. 39, Verlag Chem., Weinheim, 1988.
- 17. A. Maciejewski, *J. Photochem. Photobio.*, *A: Chemistry*, 51, 87 (1990).
- R. E. Banks, B. E. Smart, and J. C. Tatlow, "Organo Fluorine Chemistry", chap. 1, p. 58, Plenum Press, New York, 1994.
- T. M. Reed , "Fluorine Chemistry", ed. by J.
 H. Simons, vol. 5, chap. 2, Academic Press, New York, 1964.
- W. E. Gibbs and J. M. Barton, "Vinyl Polymerization, Kinetics and Mechanism of Polymerization Series", vol. 1, part 1, p. 59, Marcel Dekker, New York, 1967.
- 21. The International POF Technical Conference, Cambridge, MA, USA, 2000.
- 22. L. A. Wall, "Fluoropolymers" ed. by L. A. Wall, p. 127, Wiley, New York, 1972.
- K. Oharu, N. Sugiyama, M. Nakamura, and I. Kaneko, *Peports Pes. Lab. Asahi Glass Co. Ltd.*, 41, 51 (1991).
- 24. M. Nakamura, US Patent 4897457 (1997).
- 25. N. Sugiyama and M. Nakamura, *Abstracts of 18th Symposium on Fluorine Chemistry (JPN)*, 37 (1993).

13 2 2002 4 201