Seeing is Believing! (TEM for Polymer Microscopy)

Seeing is Believing! (TEM for Polymer Microscopy)

KAIST (Hee - Tae Jung, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science & Technology, Daejeon 305 - 701, Korea)

13 4 2002 8

2.1 1 (phase , , 0.1 mm 가 contrast), (differential interference), brew ster angle, confocal, infrared, Raman (µm) (spherulite) SPM (Optical Microscopy: OM) 가 4 nm (nm) 가 (Scaning Eelectron Microscopy:SEM) 0.3 가 SPM (Scaning Probe nm Microscopy: SPM) TEM (contrast) (high resolution TEM : HR - TEM) 가 SEM , SPM TEM , TEM 가 SEM electron detector가 fol -(secondary electron backscattered electron) ding lamellae . lamellae SPM Atomic Force Mi -가 HR - TEM SPM croscopy (AFM) TEM 500 nm 가 , near - field scanning

1.

Technique	OM	SEM	TEM	AFM
Resolution	300 nm	10 nm	0.2 nm	0.3 nm
Magnification range	2 - 2000	20 - 1 × 10⁵	200 - 2 × 10 ⁶	1000 - 2 × 10 ⁶
Can observe	surface, or bulk	Surfaces only	'bulk', but very thin films,	surface
	if transparent		less than 0.2 mm	
Specimen environment	ambient	High vacuum	High vacuum	Ambient, high
				Vacuum or fluid
Radiation damage	none	little	severe	none
Specimen preparation	easy	easy	very difficult	easy
Chemical analysis	no, unless connected	yes, X - ray	yes, X - ray and	no
	to μ Raman		electron Energy loss	
Can detect molecular orientation	yes	no	yes	no

2.2 TEM

ТЕМ

> , (tilt) 가 .

가. tilt 2 3 가 2. TEM

(objective lens) 가 TEM . 50 - 100 가 ,

2.3 (TEM Resolution) TEM 가

 $d_{diff} = \frac{0.6I}{a} (1), \quad d_{chromatic} = C_c \, \boldsymbol{a} \frac{\Delta E}{E} \boldsymbol{q}_{max} (2),$ $d_{spherical} = C_s \, \boldsymbol{a}^3 (3)$

 $,\lambda\!:\,\,,\alpha\!:\,,\alpha\!:\,,C_c$; chromatic aberation constant, C_s : spherical aberation constant, E :

1.

가 , 가 가 가 . Chromatic (aberation) 100 eV 1 eV 0.2 nm (spherical abera -ТЕМ tion) , TEM 가 , 400 kV 가 0.17 가 가 500 nm kV MV 가 (~0.1 nm) 2.4 (Contrast Mechanism) 가 contrast . Contrast mass contrast, dif fraction contrast, phase contrast Mass contrast (beer's), , staining contrast 가 가 가 Staining 가 , contrast 가 . Diffraction contrast contrast가 phase contrast contrast contrast , contrast 가 가 가 contrast 가 가 가 lamellae, hexagonal, cubic contrast mass contrast phase con trast가 (3). Staining phase contrast가 contrast

3. Mass contrast phase contrast hexagonal : Inset ED RuO₄ staining mass contrast 가 , col-가 umn . TEM solution spreading

bilayer contrast가

phase contrast가 (phase shift) contrast function fo -, contrast cusing contrast가 가 focus in - focus

가 under - focus 2.5 TEM ~50 nm

- ТЕМ
- 1) Thin Solid Film

가

- Solution Casting :

- Surface Tension Spreading : (

, phosphoric acid)

- Solution or Melt Drawing : 7 drawing , poly(acrylic acid) replica . 2) Microtome: diamond knife ~50 nm .
- 3) Collect Small Dispersed Objects
- Single Crystals : dilute solution single crystal mica
- Clusters: TEM grid
- Ultrasonic fractures :
 - TEM grid .

4) Replica Surface : Poly (acrylic acid) salt crystal ,

2.6 Staining

ТЕМ

staining

low dose 가

 4. Low dose
 smectic liquid crystal

 layer ordering:
 staining

 agent
 ,

 ,
 ?

 image
 ,

 ,
 image

 ,
 surface tension spread

 ing
 .

Staining Agents

2.

Polymers	S tains
Unsaturated hydocarbons, alcohols, ethers, amines	Osmium tetroxide
Acids or esters	(a) Hydrazine (b) Osmium tetroxide
Unsaturated rubber (resorcinolformaldehyde-latex)	E bonite
S aturated hydrocarbons (PE and PP)	Chlorosulfonic acid/uranyl acetate
Amides, esters and PP	P hos photungs tic acid
E thers, alcohols, aromatics, amines, rubber, bis phenol A and styrene	R uthenium tetroxide
Esters, aromatic polyamides	S ilver sulfide
Acids, esters	Uranyl acetate

가 가 가 . 가

가 ,

staining 4 smectic liquid low - dose crystal layer ordering , phase contrast contrast layer . stain ing . Staining electron density contrast 가 2 staining agent 가 negative staining . Staining agent 가 staining agent

.

nm staining 가 가

2.7 Cryo - TEM & FF - TEM

, , , 기 TEM 가 , cryogenic TEM (cryo - TEM) freeze fracture TEM (FF - TEM)

(3). 가

, TEM .

가 FF - TEM 가 sandwich grid 가 fracture , replica , cryo - TEM beam sensitive , freeze - facture replica beam sensitivity . cryo - TEM 2 nm . Freeze fracture replica

가 freeze - fracture 5 vesi cle cryo - TEM FF - TEM

2.8 TEM

, TEM 1) Electron beam damage, 2) sample preparation, 3) Interpretating images,

4) Sampling . Electron Beam damage

TEM . Low dose

, staining

, cryo-TEM 가

. -150

cryo - TEM

TEM carbon

grid

H₂O가

3. FF - TEM cryo - TEM

FF - TEM

Multi-step sample preparation	Quick sample preparation	
Viscous samples OK	Not suitable for viscous samples with long-length scale structures	
Permanent replica of specimen; can be imaged many times	Delicate specimen; Can be imaged only once	
Amplitude contrast	Phase contrast	
Topographical image	Sample imaged in original state	
Excellent depth resolution	Poor depth resolution; Structures appear superimposed	

5. (a) cryo - TEM (b) FF - TEM vesicle : Replica FF - TEM bilayer 3

