

1.2

(Alkaline Fuel Cell, AFC), (Proton Exchange Membrane Fuel Cell; PEMFC, Polymer Electrolyte Fuel Cell; PEFC, Solid Poly mer Electrolyte Fuel Cells; SPEFC), (Direct Methanol Fuel Cell; DMFC),

(Phosphoric Acid Fuel Cell; PAFC) 500 1000 (Molten Carbonate Fuel Cell; MCFC) , (Solid Oxide Fuel Cell; SOFC)

6 () 1 University of Minnesota () 3 University of Minnesota () 4~ () 02 2~

Polymer Electrolyte Membranes for Fuel Cells

(Jin Hwa Lee and Jongok Won, Department of Applied Chemistry, Sejong University, 98 Gunja, Gwangjin, Seoul 143 - 747, Korea) e - mail:jwon@sejong.ac.kr

.

1. Schematic presentation of the reactions in (a) PEFC and (b) DMFC.

14 4 2003 8

가 2. 2.1 , 가 (sulfonic acid) 가 가 가 , C-S 가 Gemini 1960 PEFC polystyrene sulfonic acid 가 가 가 DuPont , (perfloro sulfonic acid) (Nafion) . . 가 가 가 가 PEFC 가 가 . (electroosmotic drag), , (tetrafluoroethylene; TFE) 가, 가 가 . SO32-가 가 PTFE 가 가 , SO3²⁻ 가 1 . 가 가 ion cluster nm .), (thermal history () . (IEC: Nafion Ion Exchange Capacity) (EW: ion cluster Equivalent Weight) H_2 , O_2 가 . . perfluoro

= (meq)/ carbon (g) 가 (eq) = (g)/ $EW = (1/IEC) \times 1000$

.

Polymer Science and Technology Vol. 14, No. 4, August 2003

Nafion

420

가

,

,

가.,

O₂ + 2H ⁺	+ 20-	HaOa							가
02 1 211	71	11202			2.4 Mic	cro	mioro		тгт
	∕r			•	LCD, CC	D/CMOS	micro	,	161-
	가				,	CPU PDA	가	3	,
									2
2.2 PEFC Nafion									PEFC
					(가	,	, 가) PEFC
			가	CO ,	Micro				가
	가	가			7 2.5	- ł			
가			PEFC 가	가				가	

. Nafion , DMFC , PEFC CO 가, 120 가 가 가,

DMFC , 130 200 . 2.3 Crossover , 가 DMFC , . PEFC 150 . , 가 со CO_2 가 , 가 가 가 . 가 가 . crossover .

14 4 2003 8

(b)

2. Chemical structure of perfluorinated polymers and ionic cluster structure of Nafion.

Polymer Science and Technology Vol. 14, No. 4, August 2003

3. Structure of the BAM3G polymer and radia - tion - grafted polymer.

3.3
3.3.1

.

S - PPO poly(dimethylphenylene oxide) phosphonic acid

S - PES

S - PEEK

S - PP

4. Structures of sulfonated polymers.

200 400

가

Nafion

Nafion

a) Sulfonated polyimide (S - PI) diamine dianhydride 4; S-PI).6 . (naph -S - PI Nafion 117 thalenic Nafion 3 cell , 3,000 sulfonated polyimide sequence 가 가

b) phenol sulfonated poly(phenylene oxide) (S-PPO)가 2 - allylphenol 가 Nafion 117 Dow barrier 0.2 0.3 µm .7 Sulfone 가 phos poly(dimethylphenylene oxide) phonic phosphoric acid 25 Nafion 117 , 100 150 8 Nafion

c) phenyl ring ether sulfone
(-SO₂-) , poly(arylether sulfone) Udel [®] (polysulfone,

PSU) Victrex[®] (polyethersulphone, PES)가 2 sulfonate PSU (S - PSU) bisphenol - A ether ortho sul -.⁹ 가 fonation sulfonation 10 diarylsulphone 30% sulfonation 가 65% sulfonation 가 propylidene 가 sulfonated PES (S-PES)

sulfonation , sulfonation . S-PES 90% sulfonation Nafion , 400% 기 . , diamine 기 50% ,

d) Poly(arylether ketone) ether carbonyl phenyl , 가 Victrex[®] PEEK[™] polyether etherketone (PEEK) . Hoechst/Aventis/Axiva sulfonation PEEK $\sim 6 \times 10^{-2}$ 60% sulfonation S/cm PEFC , 50 4,000 가 120 가 sulfone 30% Nafion

(S-PEEK).¹¹ , Maxdem Poly - X 2000 , poly(4 - phenoxy benzoyl - 1,4 - phen ylene) (PPBP) sulfonation (4; S - PPBP). poly(p - phenylene) , PEEK , S - PEEK , sulfonic 가 side chain . 100

, 가 Nafion , S-PEEK 가 e) Powers and Serad 가 polybenzimidazole (PBI) sulfonation

.¹² , PBI backbone sul fonation (**4** ;S - PBI) ¹³ . 75% sulfonation , Nafion 117 , 120 200

f) Polyphosphazene 가 . Sulfonated PP UV 가 P = N -가 가 . S-PP 가 가 Nafion 117 30% , 76 가 S-PP가 173 120 200 14

g) Triblock copolymers Kraton (shell Chemical Co) sty rene/ethylene - butadiene - styrene triblock copolymer (SEBS) DAIS .¹⁵ Styrene 50 mol% sulfo-Nafion nation , 60 2.500 4.000 Nafion 가 , 가 , , 가 가 poly(styrene - butadiene - styrene)

(SBS) triblock copolymer 가 ,

5. Chemical structure of sulfonated SEBS and sulfonation process of crosslinked SBS.

14 4 2003 8

425

2.

Polymer membrane	Developer	Temperature	Conductivity S/cm	Durability hrs
S-PPO	Polymer Research Institute, NY State Univ. USA	100 150	< 0.1	-
S-PEEK	Axiva, Germany	25 130	0.06 (25)	4000
S - PSf	CNR - TAE - Institute Transformation and Storage of Energy, Italy	25 160	0.04 (80)	-
S - PPBP	Maxdem Inc. USA	50 130	0.09 (80)	200

3.3.2

crossover , 기 a) Macrocomposite

crossover Nafion 25 µm palladium foil 21 ,

barrier 22,23

가 , crack . W. L. Gore and Associates,

Gore-Select , woven non - woven matrix interpenetrate , woven PTFE web . PTFE 7 , PTFE (de fect) , 7 5 20 µm . 7 ,) , . . b) /

가 . dope ,

Silane 가 PEO precursor - 가 PEO SiO₂가 가 sol - ael .²⁴ Monododecylphosphate (MDP,), phosphotungstic acid (PWA, heteropolyacid) dope PEO/SiO₂ 가 1 x , 160 10⁻⁴ S/cm SiO2가 가 dope , dope PEO

, dopant가 -

가 가 H_2SO_4 dope SiO₂/poly(vinyl difluoride) (PVDF) (10%/15%) 0.21 S/cm 25 PWA가 Staiti silica PBI 30 µm . 400 . 60 wt% 100% PWA/SiO₂ PBI 100 0.3 S/cm , 90 150 , 100% 0.15 S/cm .²⁶ Silicotungstic acid silica, PBI 1 , 50 wt%가

, 160 100% 0.12 , S/cm $, H_2PO_4$ 0.22 S/cm 27 가 poly .28 (benzylsulfonic acid) siloxane 1.6×10^{-2} S/cm 25 , 250 가 S-PSU phospho -29 antimonic acid

Nafion 117 80 PEFC Nafion 80%

Polyvinylidene fluoride (PVDF), sulfonated polystyrtene - co - divinylbenzene (PS - co - DVB) antimonic acid, ³⁰ sulfonated polystyrene phosphato - antimonic acid ³¹ Nafion 7 7 7

Tricoli ³² Nafion caesium

Watanabe self - humidifying Pt 7 PEFC cell .³³ Silica Nafion 3% 145 DMFC

, CNR - TAE - Institute Transformation and Storage of Energy DMFC , 140 0.1 S/cm 1,000 기

.³¹ proton conductor, Zr(HPO₄)₂ in situ ,³⁴

c) Acid/Base Complex

complex

, complex complexation 가

DuPont Nafion 1 - butyl, 3 - methyl imidazolium trifluoromethane sulfonate molten acid salt (BMITf) dope . 180 0.1S/cm .³⁶ Savinell 11 M Phosphoric acid Nafion 117 dope . 175 5 x 37 10^{-2} S/cm (pKa = 2.16) self - dissocia tion 가

. H₃PO₄ 42

14 4 2003 8

H₂PO₄⁻ , H₃PO₄ PAMA+H₂PO₄⁻/H₃PO₄ 150 100 10⁻² S/cm

3. H₃PO₄가

system	H ₃ PO ₄ /	conductivity (S/cm)	
	Tepear unit	(S/CIII)	
H ₃ PO ₄	infinity	0.28 (100)	47
PEO	0.42	3×10 ⁻⁴ (50)	38
PAAM	2	8×10 ⁻³ (40)	43
PBI	5	4×10 ⁻² (190)	46
	4.5/16	5×10 ⁻² (165)/0.13(160)	49
	5	1.9 × 10 ⁻² (175)	50
P4VI	1.5	3×10 ⁻³ (100)	51
Nylon	1.8	1×10 ⁻³ (70)	42
PEI	0.5	3×10 ⁻³ (100)	39
	2	1 × 10 ⁻³	41
PAMA.H ₂ PO ₄ ⁻	2	1 × 10 ⁻² (100)	52

$$-(CH_2CH_2O)$$
 $-(CH_2CH_2)$ $-(CH_2CH_2NH_2)$
 $C = 0$
 NH_2

PAAM

PEO

PEI

3 base polymer complex . dope . complex

가 1 sulfuric acid complex PEI,³⁹ Nylon,⁴² P4VI,⁵³ PBI ⁵⁴ phosphoric acid complex 가1.8 phosphoric acid complex 가 compex [Nylon/HX, X=Cl, Br, I,⁴² PBI/HBr⁵⁴]. 1995 PBI phosphoric acid complex가 , PBI pKa=5.5 basic polymer T_q가 430 PBI 가 10⁻¹² S/cm , H₃PO4 Nafion 가 가 . PBI/H₃PO₄ complex electroosmotic drag coefficient 0 (Nafion 0.6 2) 가 25

DMFC 가 . Cela nese 200 PBI/H₃PO₄ MEA . PBI H₃PO₄, H₂SO₄, HBr incorporation , 가 가

7 3.5 7.5 H_3PO_4/PBI ⁵⁵ 130 2×10^{-2} S/cm, 190 5×10^{-2} S/cm ⁵⁶ PBI 4 d) poly(thiophenylenesul fonic acid) (PTPSA), polyperfluorooctane sulfonic acid , base PEO,⁵⁸ poly(alkyl ene carbonates), poly(propylenecarbonate) ⁵⁹

가 S - PEEK S - PSU PBI 가 270, 350 , 70 PEFC Nafion 112 300 15,8 DMFC 60 가 S-PPO poly(vinylidene fluoride) (PVDF) ⁶¹ 45 Nafion 112 , 200 cell flexi -. bility,

가 5

가. 가

Δ	PRI
ч.	וטו

Fuel catalyst Membrane thickness Power density Temp. ref. system (W/cm^2) (humidification) (mg/cm²) (µm) 0.25 H₂(48) immersed 11M H₃PO₄ 0.5 Pt 80 100 150 O₂ (28) (0.7 A/cm^2) 53.56 MeOH reformate (r.t.) 0.45 Pt 80 110 5 H₃PO₄/rep.unit 0.49 200 O₂ (no humid) H₂ (no humid) 0.55 0.45 Pt -190 55 6.2 H₃PO₄/rep.unit O₂(no humid) (1.2 A/cm^2) DMFC MeOH/H₂O 4.0 Pt - Ru 80 0.1 200 57 O₂/air (r.t) 4.0 Pt

5.

System	- SO₃H/ rep. unit	Water Content	T _g ()	Proton Conductivity at 150	ref
1:2 (PTPSA:PEO)	0.1	< 0.5%	5	1 × 10 ⁻³	62
3:1 (PTPSA:PTMC)	1.5	1.4 %	9	1.7 × 10 ⁻³	59
3:1 (PTPSA:PPC)	1.3	1.4%	8	3.3 × 10 ⁻⁴	59

PTMC: poly(tetramethyletheca	rhonate) PPC: poly(propy)	enecarbonate) PEO:	noly(oth	vlono othor)
Privic. poly(letrametry)etheca	(propy)	enecarbonale). PEO.	polyteth	viene etner)

- M. F. H. Schuster and W. H. Meyer, *Annu. Rev. Master. Res.*, 33, 233 (2003).
- M. Hogarth and X. Glipa, *Fuel Cell Today*, and reference therein (2001).
- A. G. Guzman Garcia, P. N. Pintauro, M. W. Verbrugge, and E. W. Schneider, *J. Appl. Electrochem.*, 22, 204 (1992).
- S. D. Flint and R. C. T. Slade, *Solid State Ionics*, 97, 299 (1997).
- 5. F. N. Buchi, B. Gupta, O. Haas, and G. G.

Scherer, Electrochim. Acta, 40, 345 (1995).

- S. Faure, N. Cornet, G. Gebel, R. Mercier, M. Pineri, and B. Sillion, *in Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems*, O. Savadogo and P. R. Roberge, eds., Montreal, Canada, July 6-10, 818 (1997).
- 7. A. K ver and K. Potje-Kamloth, *Electrochim. Acta*, 43, 2527 (1998).
- R. Bouchet and E. Siebert, *Solid State Ionics*, 118, 287, (1999).
- 9. R. Nolte, K. Ledjeff, M. Bauer, and R. Mulhaupt, J. Membrane Sci., 83, 211 (1993).
- J. Kerres, W. Gui, G. Engenberger, D. Bevers, W. Schnurnberger, A. Fisher and H. Wendt, *in Proceedings of the 11th Hydrogen Conference*, T. N. Veziroglu, C. J. Winter, J. P. Baselt, and G. Kreysa, eds., Stuttgart, Germany, June 23 - 28, 1951 (1996)
- T. Soczka Guth, J. Baurmeister, G. Frank, and R. Knauf, *Internation Patent WO* 99/29763 (1999)
- T. Kobayashi, M. Rikukawa, K. Sanui, and N. Ogata, *Solid State Ionics*, 106, 219 (1998).
- X. Glipa, M. El. Haddad, D. J. Jones, and J. Roziere, *Solid State Ionics*, 97, 323 (1997).
- 14. Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, J. Membrane. Sci., 154, 175 (1999).
- S. G. Ehrenberg, J. M. Serpico, G. E. Wnek, and J. N. Rider, U.S.Patent 5,468,574 (1995).
- J, Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I. - H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn *Macromolecules*, 36, 3228 (2003).
- K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier, *Electrochim. Acta*, 43, 1281, (1998).
- C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, and A. B. Bocarsly, *J. Power Sources*, 103, 1 (2001).
- 19. K. D. Kreuer, Solid State Ionics, 97, 1 (1997).
- W. Munch, K. D. Kreuer, W. Silvestri, J. Maier, and G. Seifert, *Solid State Ionics*, 145, 437 (2001).
- 21. C. Pu, W. Huang, K. L. Ley, and E. S. Smotkin, *J. Electrochem. Soc.*, 142, L119 (1995).
- 22. J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I. H. Oh,

H. S. Kim, K. T. Kim, and W. H. Jo, *J. Membrane Sci.*, 214, 245 (2003).

- M. Walker, K. M. Baumgartner, M. Kaiser, J. Kerres, A. Ullrich, and E. R uchle, *J. Appl. Polym. Sci.*, 74, 67 (1999).
- I. Honma, Y. Takeda, and J. M. Bae, *Solid State Ionics*, 120, 255 (1999).
- 25. E. Peled, T. Duvdevani, and A. Melman, *Electrochem. Solid State Lett.*, 1, 210 (1998).
- 26. P. Staiti, M. Minutoli, and S. Hocevar, J. Power Sources, 90, 231 (2000).
- 27. P. Staiti and M. Minutoli, J. Power Sources, 94, 9 (2001).
- I. Gautier Luneau, A. Denoyelle, J. Y. Sanchez, and C. Poinsignon, *Electrochim. Acta*, 37, 1615 (1992).
- B. Baradie, C. Poinsignon, J. Y. Sanchez, Y. Piffard, G. Vitter, N. Bestaoui, D. Foscallo, A. Denoyelle, D. Delabouglise, and M. Vaujany, *J. Power Sources*, 74, 8 (1998).
- M. L. Lopez, V. Compan, J. Garrido, E. Riande, and J. L. Acosta, *J. Electrochem. Soc.*, 148, E372 (2001).
- P. L. Antonucci, A. S. Ariso, P. Creti, F. Rammunni, and V. Antonucci, *Solid State Ionics*, 125, 431 (1998).
- 32. V. Tricoli, J. Electrochem. Soc., 145, 3798 (1998).
- M. Watanabe, H. Uchida, Y. Seki, and M. Emori, in the Electrochimical Society Extended Abstracts, 94, Miami Beach, Fl. October 49 - 14, abstract, 606, p. 946 (1994).
- 34. R. P. Hamlen, U.S.Patent, 5,849,428 (1998).
- 35. W. G. Grot and G. Rajendran, U. S. Patent, 5,919,583 (1999).
- M. Doyle, S. K. Choi, and G. Proulx, J. Electrochem. Soc., 147, 34 (2000).
- R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, and C. Rogers, J. Electrochem. Soc., 141, 146 (1994).
- P. Donoso, W. Gorecki, C. Berthier, F. Defendivi, C. Poinsignon, and M. B. Armand, *Solid State Ionics*, 28, 969 (1988).
- M. F. Daniel, B. Desbat, F. Cruege, O. Trinquet, and J. C. Lass gues, *Solid State Ionics*, 28, 637 (1988).
- 40. R. Tanaka, H. Yamamoto, S. Kawanura, and T. Iwase, *Electrochim. Acta*, 40, 2421 (1995).
- 41. R. Tanaka, H. Tananoto, A. Shono, K. Kubo, and M. Sakurai, *Electrochim. Acta*, 45, 1385 (2000).

- J. Grondin, D. Rodriguez, and F. C. Lass gues, Solid State Ionics, 77, 70 (1995).
- D, Rodriquez, C. Jegat, O. Trinquet, J. Grondin, and J. C. Lass ques, *Solid State Ionics*, 61, 193 (1993).
- 44. H. E. Darling, J. Chem. Eng. Data, 9, 421 (1964).
- 45. J. Sun, L. R. Jordan, M. Forsyth, and D. R. Macfarlane, *Electrochim. Acta*, 46, 1703 (2001).
- 46. S, M. Aharoni and A. J. Signorelli, *J. Appl. Polym. Sci.*, 23, 2653 (1979).
- D. T. Chin and H. H. Chang, J. Appl. Electrochem., 19, 95 (1989).
- S. M. Aharoni and A. J. Signorelli, J. Appl. Polym. Sci., 23, 2653 (1979).
- T. A. Zawodzinski, Jr., T. E.Springer, J. Davey, R. Jestel, and C. Lopez, *J. Electrochem. Soc.*, 140, 1981 (1993).
- M. Weber, J. T. Wang, S. Wasmus, and R. F. Savinell, *J. Electrochem. Soc.*, 143, 158 (1996).
- 51. H. E. Darlink, J. Chem. Eng. Data, 9, 421 (1964).
- S. M. J. Zaidi, S. F. Chen, S. D. Mikhailenki, and S. Kaliaquine, *J. New Mater. Electrochem. Syst.*, 3, 27 (2000).
- 53. H. Pu, W. H. Meyer, and G. Wegner, *Macromol. Chem. Phys*, 202, 1478 (2001).
- 54. X. Glipa, B. Bonnet, B. Mula, and D. J. Jones, Roziere, *J. Mater. Chem.*, 9, 3045 (1999).
- 55. Q. Li, H. A. Hjuler, and N. J. Bjerrum, *J. Appl. Electrochem.*, 31, 773 (2001).
- J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt, *J. Electrochem. Soc.*, 142, L121 (1995).
- 57. A. Heinzel and V. M. Barragan, *J. Power Sources*, 84, 70 (1999).
- K. Miyatake, K. Fukushima, S. Takeok, and E. Tsuchida, *Chem. Mater.*, 11, 1171 (1999).
- M. Rikukawa and K. Sanui, *Prog. Polym. Sci.*, 25, 1463 (2000).
- M. Walker, K. M. Baumgartner, M. Kaiser, J. Kerres, A. Ullrich, and E. Rauchle, *J. Appl. Polym. Sci.*, 74, 67 (1999).
- I. Cabasso, Y. Yuan, and C. Mittelsteadt, U.S.Pattent 5,989,742 (1999).
- 62. J. S. Cho, Y. Hayashino, K. Miyatake, and S. Takeoda, *E. Tsuchida, Chem. Lett.*, 1, 44 (2000).
- 63. US 6,348,279 B1.