

반도체 고집적화도 감광재료가 따라줘야

□ 손톱 크기만한 작은 반도체 칩 위에 수천만 개의 미세한 회로소자를 구현할 수 있도록 해주는 핵심 소재가 바로 반도체용 감광재료 (PhotoResist)이다.
- 감광재료란 빛에 반응하여 화학적 변화로 상 형성하는 고분자 물질로서, 이 물질을 실리콘 웨이퍼 표면에 균일하게 입힌 후, 그 위에 마스크 (원판)를 놓고 빛을 쪼이면 미세한 회로형상이 마치 사진이 찍히듯이 그대로 옮겨지게 된다. 이렇게 회로형상을 감광재료에 옮긴 후 현상액으로 처리하면 미세한 회로구조가 만들어지는데, 얼마나 미세한 구조가 형성될 수 있는가는 바로 감광재료의 특성이 좌우하게 된다.
□ 우리나라는 세계적인 반도체 대국임에도 불구하고, 그동안 감광재료의 개발이 미진하여 대부분 수입에 의존하는 실정이었으나, 최근 들어 감광재료에 대한 자체개발이 국내에서 활발히 이루어지고 있으며, 이와 관련된 특히 출원도 크게 증가하고 있다.
□ 미세한 회로구조를 형성하기 위해서는 가능한 한 파장이 짧은 광원을 사용해야 하는데, 이러한 광원으로서 그동안 레이저의 파장을 짧게 하는 기술과 전자빔 (파장:0.1 nm 이하)을 이용하는 기술이 주로 개발되어져 왔고,이에 따라 그에 적합한 감광재료의 개발도 지속적으로 이루어지고 있다.
□ 특허청의 자료에 따르면, 감광재료 관련 특허출원은 이 분야의 연구개발이 시작된 1982년도부터 2001년 말까지 총 385건으로서, 연평균 출원건수가 1980년대에 5건 미만이던 것이 1990년대 중반에 15건 이상, 1999년 이후에는 60건 내외로 크게 증가하고 있는 추세이다 (그림 1).
 기술분야별 출원동향을 보면, 1980년대에 파장 436 nm 및 365 nm의 레이저용 감광재료에 대한 출원 위주에서, 1990년대 중반부터 256 메가급 메모리 소자 개발로 파장 248 nm 및 193 nm의 레이저용 감광재료에 대한 출원이 크게 증가하였으며, 1998년 이후에는 1 기가급 이상의 메모리 소자 개발로 파장 157 nm의 레이저 및 전자빔용 감광재료에 대한 출원이 많이 이루어지고 있는 것으로 나타났다 (그림 2).
 출원인별 출원 현황을 보면, 내국인과 외국인의 출원 비중이 각각 50%로 비슷한 수준이고, 국내 기업 중에는 삼성전자, 하이닉스 및 금호석유 화학에서 대부분의 출원이 이루어지고 있는 것으로 나타났다 (표1).

□ 참고로, 감광재료의 국내시장 규모는 2002년에 1.7억 달러 (세계시장 규모의 11%)였으며, 2010년경에는 4.3

억 달러 (세계시장규모의 14%)로 증가할 전망이다 (표 2).

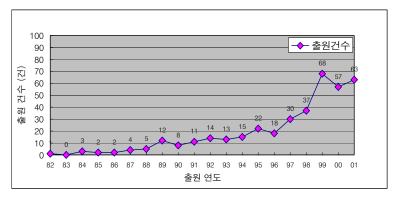


그림 1. 연도별 감광재료 관련 특허출원 동향.

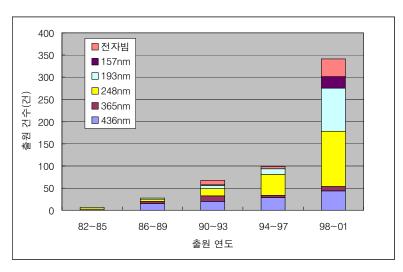
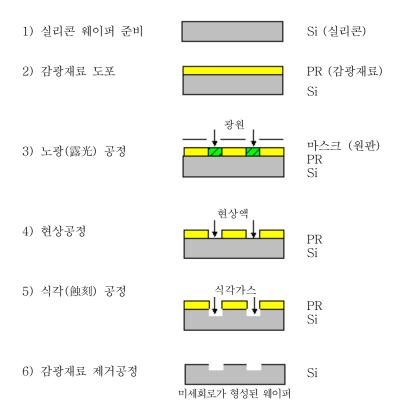


그림 2. 기술분야별/연도별 감광재료 관련 특허출원 동향.

표 1. 출원인별 감광재료 관련 특허출원 현황 (1982~2001)

	내국인					외국인					
구 분	삼성 전자	하이 닉스	금호 석유화학	기타	소계	후지포토 필름	스미토모 화학	쉬플리	기타	소계	총계
출원건수	118	34	13	11	176	88	29	20	38	175	351
비율(%)	33.6	9.7	3.7	3.1	50.1	21.1	8.3	5.7	10.8	499	100


표 2. 국내 감광재료 시장규모

연도 기술 분야	1998	1999	2000	2001	2002	2006	2010
436 nm	30	40	50	40	38	45	35
365 nm	60	70	100	90	89	100	90
248 nm	10	15	40	30	33	150	200
193 nm					5	50	30
157 nm						15	70
전자빔							5
합계	100	125	190	160	165	360	430

(단위 : 건)

(단위:100만 달러)

<참고자료> 감광재료를 이용한 반도체 미세회로 형성 공정

<특허청 심사3국 정밀화학과 김성수>