

올레핀 중합용 고활성 FI 촉매의 진보

Yingtai Jin · Gang LI · Xiaowei Ba · Yuping Yuan Lihui Cao·우성일·조현용·홍대식·Liqiang Cui·선은정

Yingtai Jin

- 1963 Chemistry, Jilin University of Science and Technology, China (B.Sc)
- 1987 Assistant Professor, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Science (CAS), China
- 1989 Visiting Professor in Chemistry, Tokyo University of Technology, Japan
- 2002 한국과학기술원 생명화학공학과, 방문교수, Brain Pool Fellow
- 1992~현재 Professor, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Science (CAS), China

Gang Li

- 1989 Chemistry, Polymer Chemistry, Jilin Institute of Technology, China B.Sc)
- 2002 Assistant Professor, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Science (CAS), China
- 1997 polymer chemistry, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Science (CAS) (M.Sc), China
- 2003~현재 in Chemical Engineering, Ecole Polytechnique de Montreal, Canada (Ph.D candidate)

Xiaowei Ba

- 1997 Chemistry, Polymer Chemistry, Northeast Normal University, China (B.Sc)
- 2000 Chemistry, Polymer Chemistry, Northeast Normal University, China (M.Sc) 2003~현재 Assistant Professor, Changchun Institute of Applied Chemis-
- try (CIAC), Chinese Academy of Science (CAS), China

Yuping Yuan

- 2003 Chemistry, Polymer Chemistry, Shenyang Institute of Chemical Technology. China (B.Sc)
- 2004~현재 Polymer Chemistry, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Science, China (M.Sc candidate)

Lihui Cao

- 1998 Chemistry, Jilin Institute of Technology, China (B.Sc)
- 2001 Research assistant, Jilin Province Tianfeng Pharmaceutical Co., China
- 2002~현재 Polymer chemistry, Changchun Institute of Applied Chemistry
 - (CIAC), Chinese Academy of Science, China (Ph.D candidate)

우성일

- 1973 서울대학교 화학공학(학사)
- 1975 한국과학원 화학공학(석사)
- 고분자연구실(KIST) 연구원 1978
- 위스콘신대학교 화학공학(공학박사) 1983
- 토론토대학교 화학과 3M Co. 연구원, 1989 : 동경공대 교환교수 독일 Max Plank 연구소 홈볼트 교환교수 1985
- 1991
- 1985~현재 한국과학기술원 생명화학공학과 교수
- 2001~현재 초미세화학공정시스템 연구센터 소장

조현용

- 1996 동국대학교 화학과 (이학사)
- 대진정밀화학(주) (현, Akzo Nobel Amides Co.) 연구원 1997
- (주) 아남반도체기술 (현, (주)아큐텍반도체기술) 연구원 1998
- 2001 경북대학교 화학과 (이학석사)
- 2002~현재 한국과학기술원 생명화학공학과(박사과정)

홍대식

- 1997 한국과학기술원 화학공학과(공학사)
- 1999
- 한국과학기술원 화학공학과(공학석사) 한국과학기술원 생명화학공학과(공학박사) 2006
- 2006~현재 LG화학기술연구원

Ligiang Cui

- 1993 Chemistry, Polymer Chemistry, Zhejiang University, China (B.Sc)
- Polymer Chemistry, Changchun Institute of Applied Chemistry 1996 (CIAC), Chinese Academy of Science (CAS), China (M.Sc)
- 2002 Engineer, Research Institute of QiLu Petrochemical
- 2003~현재 한국과학기술원 생명화학공학과(박사과정)

선은정

- 2005 한양대학교 응용화학공학부(공학사)
- 2005~현재 한국과학기술원 생명화학공학과 (석사과정)
- Yingtai Jin Gang LI Xiaowei Ba Yuping Yuan Lihui Cao 우성일 조현용 홍대식 선은정 Liqiang Cui

Progress in High Performance FI Catalysts for Olefin Polymerization

중국과학원 장춘응용화학연구소 고분자공학과 (Yingtai Jin·Gang LI·Xiaowei Ba·Yuping Yuan, and Lihui Cao, Department of Polymer Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Chanchun 13002, China) e-mail: ytj68@163.com

한국과학기술원 생명화학공학과 & 초미세화학공정시스템 연구센터 (Seong Ihl Woo, Hyun Yong Cho, Dae Sik Hong, Liqiang Cui, and Eun Jung Sun, Department of Chemical and Biomolecular Engineering & Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea) e-mail: siwoo@kaist.ac.kr

1. 서론

올레핀 중합용 촉매 연구분야에 있어서 지난 10여 년간 메탈로 센(metallocene) 촉매를 이어 비메탈로센(non-metallocene) 촉 매가 급속히 발전해 왔다. **그림 1**은 비메탈로센 촉매계를 이용한 을 레핀 중합관련 학술논문 발표 추이를 보여주고 있다.¹ **그림 1**에 서 보듯, 비메탈로센 촉매계를 이용한 올레핀 중합관련 논문 편수 가 매년 증가추세에 있으며 특히 2000년 이후 촉매의 중심 원자 가 Sc으로부터² 4족~12족 원소뿐만 아니라 13족 원소까지 확대 되어졌음을 알 수 있다. 이 중 1998~2001년 4족 원소들을 중 심 금속으로 발표된 논문 편수는 1994~1997년에 발표된 논문 편수의 2.6배, 10족 원소를 중심 금속으로 발표된 논문 편수는 1994~1997년에 발표된 논문 편수의 4배에 이른다.

최근 10년간 Brookhart 연구팀에 의해 연구된 비메탈로센 촉 매 외에 'FI촉매'로 통칭되는 새로운 종류의 비메탈로센 촉매가 연구, 발표되어 많은 관심을 모으고 있다.³⁻¹⁴ FI촉매는 일본 Mitsui Chemicals의 Fujita 연구팀이 처음 합성하여 발표한 이후,¹⁵ 지 금까지 80여 편의 관련 논문과 특허가 발표되었다. FI촉매는 올 레핀 중합용 촉매로서 폐녹시-이민(phenoxy-imine) 리간드를 포 함하는 금속 착물과 조촉매로 MAO(methylaluminoxane), Al-B[*i*-Bu₃Al/Ph₃CB(C₆F₅)₄] 또는 Mg-Al[MgCl₂/*i*-Bu_mAl(OR)_n] 로 구성된다. 'FI'의 의미는 일본어 발음으로 폐녹시-이민을 "Fenokishi-Imin Haiishi"이기 때문이며, 또 다른 의미는 'Fujita group Invented catalyst'에서 비롯되었다.

본문에서는 FI촉매의 화학적 특성을 설명하고 또한 이 촉매의 특성을 중심으로 촉매합성, 중합, 촉매의 특성 및 응용을 소개하 고자 한다.

2.1 촉매의 조성과 구조

FI촉매의 구조는 **그림 2**에서 보여주고 있으며, R¹, R²와 R³는 알킬, 알릴, 실릴기 등을 포함하는 두 자리의 페녹시-이민 리간 드가 중심금속 M(M=Ti, Zr, Hf, V 등)에 배위되어진 형태를 띠 고 있다. 단결정 회절 분석법에 의해 결정된 대표적 착물(**그림 3**)의 결정 구조는 **그림 4**와 같다.¹⁶

그림 3의 착물 1은 Zr을 중심으로 뒤틀린 팔면체(distorted octahedral) 구조를 형성, C2-대칭을 이룬다. 이 중 두 개의 산소 원자는 *trans*-위치(O-Zr-O 165.5°)에, 두 개 질소원자는 *cis*-위치(N-Zr-N 74.0°)에, 두 개 염소원자 또한 *cis*-위치(Cl-Zr-Cl 100.4°)에 있다.

2.2 촉매 합성

페녹시-이민 착물 합성은 일반적으로 세 단계로 나눠 진행한다. 페놀 유도체와 *p*-포름알데히드를 염기성 조건에서 축합반응시 켜 살리실알데히드(salicylaldehyde)를 얻고, 얻어진 살리실알 데히드와 일차 아민화합물을 반응시켜 페녹시-이민 유도체를 얻 는다.^{17,18} 마지막으로 알킬리튬(alkyl lithium)과 Zr,¹⁹ Ti,^{20,21} Hf²² 염화물을 반응시켜 촉매를 얻는다. 대표적인 예로 Zr 착물

그림 2. FI촉매의 일반식.¹⁶

그림 3. 착물 1.²¹

그림 4. 착물 1의 x-ray 결정 구조.¹⁶

2. FI촉매의 화학적 특성

그림 1. 비메탈로센 촉매에 대한 논문 발표 건수.11

180

Scheme 1. Bis(phenoxy-imine)zirconium dichloride 착물 합성.¹⁶

합성 과정을 Scheme 1에 나타내었다.

2.3 조촉매, 단량체 및 중합

FI촉매계의 조촉매로는 일반적으로 MAO, Al-B(aluminumboron), 및 마그네슘 담지 알루미늄 등 세 종류가 있다. 일반적인 중합방법으로 MAO를 단량체와 용매 용액에 첨가한 후, 촉매를 주입하여 중합반응을 진행시킨다. 조촉매로 Al-B를 사용할 경우 조촉매를 단량체/용매/Ph₃CB(C₆F₅)₄ 혼합용액과 촉매에 각각 넣 은 후, 촉매/조촉매 혼합용액을 단량체/용매/Ph₃CB(C₆F₅)₄/조촉 매 혼합용액으로 주입하여 중합한다. 마그네슘 담지 알루미늄을 조촉매로 사용하는 경우에는 우선 염화마그네슘 무수물과 2- 에 틸-1-헥산을(2-ethyl-1-hexanol)을 반응시켜 염화마그네슘 첨 가생성물을 얻는다. 단량체/용매 혼합용액에 *i*-Bu₃Al과 마그네슘 첨가생성물을 반응시켜 MgCl₂/*i*-Bu_mAl(OR)_n을 얻은 후 촉매 를 주입하여 중합한다.²³ 지금까지 연구된 단량체로 에틸렌, 프로 필렌 외에 4-메틸펜틸렌(4-methyl-pentylene), 1-데실렌(1decylene), 1-옥틸렌(1-octylene), 1-헥실렌(1-hexylene) 등으로 이들의 균일중합 및 공중합에 관한 연구가 진행되었다.

3. FI촉매의 주요 특성

3.1 고활성 촉매

동일한 조건에서 Zr, Ti, Hf을 중심금속으로 하는 세 가지 FI 촉매와 전형적인 메탈로센 및 비메탈로센 촉매의 에틸렌 중합 활성을 비교한 결과를 **표 1**에 나타내었다. Bis[N-(3-t-butylsalicylidene) axilinato]zirconium dichloride(착물 1)의 중합 활 성(519 kg-PE/mmol-cat/h)은 Cp₂ZrCl₂(20 kg-PE/mmolcat/h)의 25배로 에틸렌 균일중합 촉매 중 활성이 가장 높은 촉 매이다. Ti의 착물 2와 Hf 착물 3도 높은 활성을 나타내고 있다.

리간드 구조를 변형시키면 에틸렌 중합시 Zr-FI촉매의 활성 을 더욱 높일 수 있다. 치환기 R²를 변경시킨 결과(**그림 5**) 치 환기의 입체적 크기 순서(*t*-Bu- < adamantyl- < cumyl- < 1,1-diphenylethyl-)에 따라 중합 활성이 커지는 것을 알 수 있다. R¹이 페닐기인 경우(R²=*t*-Bu-, R³=methyl-) 중합활성 은 331 kg-PE/mmol-cat/h에서 2,383 kg-PE/mmolcat/h(R²=1,1-diphenylethyl-, R³=H-)까지 증가하며 R¹이 시클로헥실기인 경우(R²=*t*-Bu-, R³=methyl-) 중합활성은 82 kg-PE/mmol-cat/h에서 6,552 kg-PE/mmol-cat/h(R²=

표 1. 착물 1~3에 의한 폴리프로필렌 중합 활성

"Conditions: cocat. MAO, 25 °C min, P(C₂H₄) 0.1 MPa. ^bkg-PE/mmol-cat/h.

그림 5. 착물들의 구조와 에틸렌 중합 활성 관계.²⁵

1,1-diphenylethyl-, R³=H-)까지 증가한다. 이 중합 활성에 서의 TOF(turnover frequency)는 64,900 /sec · atm으로 동 일조건에서 Cp₂ZrCl₂ 보다 수 백배 이상 큰 것으로 상압 올레핀 중합 촉매 반응에서 가장 높은 활성을 보여주고 있다.^{24,25}

치환기 R²의 영향은 아래와 같은 두 가지 작용 즉, 치환기 R²가 입체적 장애물로서 중심금속과 연결된 산소 주게(oxygen-donor) 를 보호하는 것으로 MAO와 같은 루이스 산의 접근을 가로막거 나 촉매와 루이스 산이 반응 후 생성되는 촉매 활성점을 보호한 다. 다른 작용은 입체적으로 큰 치환기 R²는 양이온인 촉매활성 점과 음이온인 조촉매의 분리를 촉진하여 단량체가 촉매 활성점 에 삽입하는 하는 것을 용이하게 할 수 있다.

3.2 중합물의 분자량 조절

표 2에서 보는 것과 같이 치환기 R¹의 입체적 크기가 클수록 폴리에틸렌의 분자량(*M_e*)이 커진다. 예로 *o*-메틸페닐기 < *o*-이 소프로필페닐기; 메틸기 < 에틸기 ; 시클로부틸기 < 시클로아밀기 등 치환기 R¹을 바꾸는 방법으로 분자량을 1,400에서 2,200,000 까지 조절할 수 있다. 분자량의 조절이 가능한 이유는 입체적 크 기가 큰 치환기 R¹이 고분자 시슬의 *β*-수소 전이를 저지하는 역 할을 하기 때문이다.

또한 주목할 점은 50 ℃, 상압 조건에서 착물 1/MAO를 촉매계 로 중합할 때에는 분자량이 8,000 정도인 폴리에틸렌을 생성시 키지만 Al-B을 조촉매로 사용하는 경우 중합 활성도 비교적 높 으며(Scheme 2)^{16,21,26} 분자량이 5,050,000로서 지금까지 합성 된 폴리에틸렌 가운데 최고 분자량의 폴리에틸렌을 생성시킨다. 더욱 주목되는 연구는 25 ℃ 상압 조건에서 착물 4/Al-B을 촉 매계로 중합한 폴리에틸렌의 분자량이 매우 커서 일반적인 방법 으로 분자량과 분자량 분포를 측정할 수 없다. 상기 촉매로 70 ℃, 0.9 Mp 압력 조건에서 에틸렌과 프로필렌을 공중합하면 공중합 체 중 폴리프로필렌의 함량이 20 mol%, *M*_w=10,200,000(*M*_w/

표 2. R¹의 변화에 따른 분자량 변화³⁸

Scheme 2. 사용한 조촉매 종류의 변화에 따른 분자량의 변화.³⁸

Scheme 3. 페녹시-아민 착물 형성 반응 Scheme.²²

M_n=2.52)으로 선형 에틸렌-프로필렌 공중합체 중 분자량이 가장 크고 중합 활성은 36 kg-copolymer/mmol-cat · h (**Scheme 2**)에 달한다.

착물 1과 *i*-Bu₃Al의 반응 생성물을 ¹H NMR로 분석한 결과 이소부틸기의 β-수소가 전이하고, 이민기가 환원되어 아민을 생성시켰음을 알 수 있다. 결국 이소부틸렌(isobutylene)과 아 민 착물(**Scheme 3**)을 생성시킨다. 다음 단계로 Ph₃CB(C₆F₅)₄ 과 반응시킨 후 화학적으로 정확히 어떤 생성물이 만들어지는지 는 구명되지 않았으나 반응초기 아민기를 포함하고 있는 알루미 늄 착물을 생성시키는 것으로 추정된다.^{16,22,26} Ph₃CB(C₆F₅)₄가 β-수소를 포함하고 있지 않은 점을 미루어 볼 때 활성점을 생 성시키기 전에 비교적 안정한 아민 착물을 생성시켜 β-수소 전 이와 같은 부반응을 피하여 중합체의 분자량이 조절되는 것으로 보인다.

3.2.1 중합체의 분자량 분포 조절

FI 촉매를 이용하여 일정 조건에서 중합을 시도하였을 때, 생 성된 폴리에틸렌의 분자량 분포가 단봉, 이봉, 삼봉으로 나타난 다.^{27,28} 착물 5에 MAO을 조촉매로 하여 에틸렌을 중합한 결과 얻어진 중합물의 분자량 분포와 중합 온도 사이 관계는 **그림 6** 과 같다. 0 ℃에서 중합하면 단봉, 25 ℃와 75 ℃에서 중합하면 이봉과 삼봉의 분자량 분포를 갖는 폴리에틸렌을 각각 얻을 수 있다. 단지 중합 온도만 변화시킴으로써 중합물의 분산성을 변화 시킨 결과가 보고된 것은 처음이다.

3.2.2 중합반응 입체규칙성 조절

착물의 중심 금속, 리간드 그리고 조촉매 등을 변화시키는 방 법으로 FI촉매는 어택틱(atactic),²² 아이소택틱(isotactic)²² 또 는 신디오택틱(syndiotactic)²⁹⁻³³ 폴리프로필렌을 합성할 수 있다. 하나의 질소주게에 다섯 개의 수소가 모두 불소로 치환된 페닐기 를 갖는 착물 6(그림 7)을 예로 들면, R²가 신디오택틱 중합물을 생성시키는 데 영향을 미친다. *ortho*-치환 R² 리간드의 입체적 크 기가 클수록 신디오택틱도(syndiotacticity)가 증가한다. 즉 R²= H:rr=43%, R²=Me:rr=50%, R²=*i*Pr:rr=75%, R²=*t*Bu: rr=87%, R²=Me₃Si:rr=93%으로 나타났다. R²의 입체적 크기

Conditions: cocat. MAO, P(C₂H₄) 0.1 Mpa, 5 min.

그림 7. 착물 6의 화학적 구조.³²

그림 8. R²-H 입체적 크기에 따른 폴리프로필렌의 신디오택틱도.³²

에 따른 신디오택틱도의 상관관계를 그래프로 나타내면 **그림 8**과 같이 직선의 경향을 보인다.

메탈로센 촉매는 일반적으로 C2-대칭구조를 갖는 주촉매의 경 우 *i*-PP를 생성시키고 Cs-대칭구조의 주촉매의 경우는 s- PP를 생성시킨다. 그런데 C2-대칭구조를 갖는 Ti-FI 착물은 s-PP를 생 성시킨다.²¹ 이런 결과를 통해 볼 때 대칭구조와 중합물의 입체규칙 성 상호간의 관계는 예측하기 어렵다. *ortho*-치환기의 입체적 장 애가 입체규칙성에 뚜렷한 영향을 주는 것을 볼 때, 중합체의 입체 규칙성은 리간드 구조에 영향을 받는다는 것은 의심할 여지가 없 다. 따라서 "Ligand-directed chain-end control polymerization"라고 명명한다. 이로서 리간드 구조의 연구가 어떻게 중 합물의 입체규칙성을 조절하는지에 대한 다양한 연구가 기대된다.

3.3 다중 리빙 중합(Multiple Living Polymerization)의 가능성

많은 FI촉매를 이용하여 에틸렌,³³⁻³⁵ 프로필렌의^{4,31,32,36} 리빙 중 합(living polymerization)이 가능할 뿐만 아니라 에틸렌과 프로필 렌의 블록 공중합도 가능하다. 특히 처음으로 리빙 중합하면서 높 은 입체규칙성을 갖는 촉매와 '다중 리빙 중합' 촉매도 발견되었 다.^{4,31,32,36} 설득력있는 하나의 결과로 착물 **6**(R²=*t*Bu-)/MAO 촉매계는 50 ℃, 0.1 Mp 압력조건에서 에틸렌을 중합한 결과 중 합물의 *M_n*은 중합시간에 따라 직선으로 증가하며 아울러 중합물 의 *M_w/M_n*은 중합시간에 따라 변화를 보이지 않았다(**그림 9**).

리빙 중합의 인과관계에 관한 정보를 얻기 위해 R¹ 위치에 불 소치환 페닐기를 갖는 리간드를 포함하는 7종의 착물 8~14를 촉매로 사용하여 에틸렌중합을 연구했다(**그림 10**). 그 중 R¹의

그림 9. 착물 6/MAO 촉매계에서의 에틸렌 중합시간과 분자량, 분자량 분포와의 관계.³²

그림 10. R¹의 변화에 따른 에틸렌 중합시 리빙 특성 변화.³⁵

페널기의 ortho- 위치에 불소가 치환된 모든 착물 8~11은 분 자량 분포(M_w/M_n=1.05~1.13)가 좁은 중합물을, ortho-위치 에 불소가 치환되지 않은 착물 12~14는 분자량 분포(M_w/M_n= 2)가 상대적으로 넓은 중합물을 생성한다. 이를 통해 볼때, R¹의 페닐기에서 ortho-위치의 불소 치환은 리빙 중합의 중요한 요 인으로 해석된다. 한편 R¹의 페닐기에 불소가 치환되지 않은 착 물들에 의해 중합된 중합물의 말단을 ¹³C NMR로 분석한 결과 말단에 메틸기와 비닐기의 함량이 거의 같다는 것을 확인하였다. 그러므로 리빙 중합이 아닌 경우 β-수소 이동 때문에 사슬 이동 반응이 우세하다는 것을 알 수 있다.

Ortho-위치에 치환된 불소의 작용을 좀 더 명확하게 증명하 기 위해 중합 활성종(그림 11(a))에 대하여 DFT 계산을 수행 하였다. 이 불소 원자와 사슬 말단 중 β-수소사이의 거리는 2.276 Å으로 비결합 구조의 상호 인력이 작용하는 범위에 속하 며 탄소와 β-수소의 거리는 1.13 Å으로 활성화되기 전보다 길 어졌다. 이로부터 이 불소 원자의 가능한 메카니즘을 그림 11(b) 와 같이 표시할 수 있다. 즉 ortho-치환 불소 착물(A)이 MAO 와 반응하여 양이온 촉매 활성점(B)을 생성한다. 단량체인 에틸 렌이 양이온 촉매 활성점(B)을 생성한다. 단량체인 에틸 렌이 양이온 촉매 활성점으로 접근하고 Ti-CH₃ 결합 사이에 삽입되어 8개의 원소가 고리를 이루어 금속 중심에 활성점(C) 을 형성한다. 불소-수소 사이 상호작용은 β-수소 이동을 방지 하는 것으로 추정한다.

리빙 중합의 정의에 따르면 일반적으로 단일 활성점에서 하

그림 11. (a) FI촉매의 활성점 구조와 (b) *ortho*-치환 불소 착물의 활성 화 및 에틸렌 삽입 메커니즘.³⁵

Scheme 4. 다중 리빙 중합.³⁵

그림 12. 다중 리빙 중합에 의한 폴리에틸렌의 GPC 분석 결과.

표 3. 착물 16-19를 이용한 에틸렌 중합 결과³⁸

Entry	.5	2	2.	.4	5 Caj2/Cly	
l'aplan M	Ÿ	\diamondsuit	ϕ	Ő		
Munoh the	47	2.1	3.8	13.8	636.0	
M_M. ¹⁴	1.01	1.52	1.62	1.76	2.61	
Activity ^d	38	30	115	204	27	
their entropy 4	50	90	90	78	(52)**	
 a) Polymerization of (0.1 MPa); MAD (1. Polymerization time b) Determined by 0 (0 in kp.PErmon2 of 0 polymerization by 0 	25 minut: 25 minut: 5 minut IPC using (2-8) 1 MARE (c)	25 °C; atmosp Toluene (200 polysthylete o	heric attylors mLy alibration	(0		

나의 중합물 분자를 생성하므로 촉매의 효율은 일정할 수 밖에 없다. 착물 15/MAO를 촉매로 사용하고 ZnEt₂ 또는 H₂를 사슬 이동제로 사용하여 최초로 '다중 리빙 중합'을 실현하였으며 '한 개 활성점이 여러 개의 중합물 분자를 생성하는 리빙 중합'으로 정의 했다. ZnEt₂을 예로 설명한다. (A) 촉매에 에틸렌을 첨가하여 리 빙중합을 시작, (B) (A)에 ZnEt₂ 주입하여 사슬이전반응 개시, (C) 계속하여 중합반응이 진행(Scheme 4)된다. (A)단계에서 얻은 중합물 X의 M_n =36,700, M_u/M_n =1.20이며, (A)로부터 (C)단계 걸쳐 얻은 중합물 Y의 M_n =37,000, M_u/M_n =1.31(그 림 12)이다. 이 발견은 간단하면서도 유용한 단분산 Zn 말단을 갖는 폴리에틸렌 중합법을 제공했을 뿐만 아니라 폴리올레핀을 포 함하는 각종 공중합물 합성법을 개척하였다.

3.4 말단에 많은 비닐기를 포함한 폴리에틸렌 중합^{26,37,38}

R¹이 시클로프로필기, 시클로부틸기, 시클로펜틸기, 그리고 시 클로헥실기로 각각 치환된 착물 **16~19**를 이용한 실험 1~4의

표 4. 착물 2, 20, 21, 조촉매 Mg-AI, MAO를 이용한 중합결과 비교³⁹

complex	Cocatalyst	Activity	M, d(×10 ³)	MwM.	
2	MgCl ₂ /BumAl(OR)n	36	509	2.66	
20	MgCl2/BumAl(OR)n	21	596	2.67	
21	MgCl ₂ /BumAl(OR),	36	231	2.40	
2	MAO	45	464	2.38	
20	MAO	21	625	2.74	
23	MAG	99	229	2.07	

⁶ Conditions: 50 C, P(C₂H₄) 0.9 MPa, 30 min, complex 0.5 µmol. ⁶ MgCl₂/Bu_mAl(OR)₀, MgCl₂ (0.4 mmol), EHA (2.40 mmol), Bu₃Al (2.40 mmol), MAO; 1.25 mmol. ⁶ kg-PE/mmol-cat/h. ⁴ Determined by GPC using polyethylene calibration.

그림 13. (a) FI촉매/MgCl₂/Bu_mAI(OR)_n에 의해 중합된 폴리에틸렌의 사 진과 (b) FI촉매/MAO에 의해 중합된 폴리에틸렌의 사진.³⁹

실험결과와 실험 5의 Cp₂ZrCl₂를 이용한 실험결과(**표** 3)를 비 교하여 볼때, 실험 1~4의 중합물의 분자량 분포는 실험 5에 비 해서 상대적으로 좁고 중합 활성은 상대적으로 높으며 중합물의 말단의 비닐기 함량도 상대적으로 큰 값을 갖는다. 이 결과는 IV 족 금속을 중심 원소로 하는 촉매에 의한 올레핀 중합 결과로서는 첫 번째 예이다.

3.5 조촉매-MgCl₂/*i*-Bu_mAl(OR)_n(Mg-Al)^{23, 39-42} 3.5.1 조촉매의 합성

메탈로센 촉매나 비메탈로센 촉매를 막론하고 조촉매로서 MAO 혹은 보론 화합물은 꼭 필요하다. 그러나 이러한 조촉매들은 가 격이 매우 높아 지금까지도 변형방법을 연구하고 있다. 앞서 서 술한 것과 같이 Mg- Al 조촉매는 MAO나 보론 화합물이 포함되 지 않으며 특별히 따로 합성할 필요없이 각 성분을 일정한 비율로 혼합하여 사용한다.

3.5.2 고활성 고분자량 및 단일 활성 중심

착물 2, 20, 21을 Mg-Al을 조촉매로 하여 에틸렌을 중합한 결 과 중합물 분자량, 분자량 분포 및 중합 활성을 막론하고 MAO 을 조촉매로 한 결과와 큰 차이가 없다는 것을 알 수 있다(**표 4**). 착물 22(**표 4**)를 Mg-Al 조촉매로 에틸렌을 중합하면 중합 활성 은 1,820 kg-PE/mmol・cat・h(M_n=5,090,000)이며, MAO을 조촉매로 사용하였을 때의 중합 활성은 1,640 kg-PE/mmol・

cat · h(*M*_v=3,990,000)이다.

3.5.3 높은 패킹 밀도(Packing Density)

중합물의 형태 구조(morphological structure)의 연구 결과 많 은 종류의 FI 주촉매가 Mg-Al을 조촉매로 사용하였을 때, 비교 적 균일한 입자를 갖는 폴리에틸렌을 형성하며(그림 13(a)) 패킹 밀도는 0.47 g/mL 까지 크게 나타나지만, MAO를 조촉매로 사 용하는 경우 불규칙한 블록 형태의 폴리에틸렌을 형성한다(그림 13(b)). 이는 중합반응이 촉매표면에서 일어났으며 MgCl₂가 운 반체 역할을 했다는 것을 알 수 있다. 그렇지만 여전히 좁은 분자 량분포(M_w/M_n =2.40-2.67, MAO를 조촉매로 사용하였을 때 는 M_w/M_n =2.07-2.74)를 갖는 중합물을 생성하며 단일 활성 점 촉매에 속한다. 운반체 촉매로 이같이 좁은 분자량 분포를 갖 는 중합물을 얻는 것은 최초의 보고이다.

3.5.4 신디오택틱 폴리프로필렌 중합

Mg-Al을 조촉매로 하는 촉매계는 리빙중합 뿐만 아니라 에틸렌 과 프로필렌을 공중합하여 공중합물 중 프로필렌의 함량이 높고 분 자량 분포도 좁은 공중합체를 얻을 수 있다. 흥미로운 연구결과로 착물 23(그림 14)/ Mg-Al 촉매계로 높은 신디오택틱도, 고융점 ([rr] = 97%, T_m=155 ℃) 폴리프로필렌을 얻었다. 반면 MAO 를 조촉매로 사용하였을 때는 [rr]=93%, T_m=152 ℃인 폴리프로 필렌을 얻는 결과를 통해 Mg-Al 조촉매가 아주 효과적이라는 것 을 알 수 있다.

355 고활성, 고수명(Life Time) 및 열적 인정성을 갖는 바니듐 촉매

바나듐 촉매의 결점은 열적 안정성이 낮아 쉽게 V²⁺ 형태로 환 원하여 중합활성을 잃게 된다. 착물 24(그림 15)/Mg-Al 촉매계 로 에틸렌을 중합할 때 중합온도가 상승함에 따라 중합활성이 현 저히 높아지지만 VOCl₃/ Mg-Al은 감소한다. 이를 통해 리간드 역할의 중요성을 알 수 있다. 착물 24/Mg-Al 촉매계는 비교적 높은 온도에서 고활성을 나타낼 뿐만 아니라 또 다음과 같은 세 가지 특성을 갖고 있다. (1) 75 ℃ 고온에서 60분 동안 중합을 실시하였을 때 여전히 중합 활성을 가지고 있지만 VOCl₃/마그네 슘-알루미늄계는 15분 동안 중합하였을 때 중합 활성이 없어진

그림 14. 착물 23.³⁵

그림 15. 착물 24.³⁹

다. (2) 폴리에틸렌의 분자량이 매우 커서(M_n=50,000,000) 일 반적인 방법으로 M_n 측정이 불가능하다. 만약 사슬 이동제로서 수 소기체 존재 하에서 중합하면 M_w/M_n=2.5로 여전히 단일 활성 점 촉매에 속한다. (3) 중합물의 형태구조는 균일한 입자형태로 MgCl₂는 이동체 작용을 한다. 그러므로 이 V-FI촉매는 고성능 FI촉매 중의 전형적 예로 볼 수 있다. Fujita의 서술대로 '올레핀 중합용 V 촉매 연구는 올레핀 중합연구 중에서 결정적 목표에 도달했다.'라고 할 수 있다.

4. FI촉매의 활성점 구조와 중합 기구^{16,32,36,44-46}

FI주촉매는 용액 중에서 다섯 가지 잠재된 이성질체 형태로 존 재한다. 그들 사이의 이성질화 반응은 리간드, 온도 등의 조건에 영 향을 받을 뿐만 아니라 중합반응에도 큰 영향을 미친다.

착물 1에 에틸렌이 결합된 Me-Zr⁺ 활성점 모형을 도입하여 DFT 계산을 한 결과는 x-ray로 구조를 결정했을 때의 결합각 과 일치했다. 즉, ∠O-Zr-O'= 168.8°(165.5°), ∠N-Zr-N'= 77.0°(74.0°), ∠Cl- Zr-Cl'=103.2°(100.4°), 비틀림각 Zr-N-C-C'= 60.7°(59.8°)이다. 이는 DFT 계산이 구조분석의 유 용한 수단임을 설명한다. X-ray 분석 결과 두 개 염소 원자 모두 cis-형태로 존재하며 DFT 계산 결과 양이온 촉매 활성점에 두 개 이용할 수 있는 cis-위치가 있고 에틸렌-Zr-Me의 결합각은 74.6°(그림 16 아래)이며 Zr-N과 같은 평면에 놓여 있기에 상 기 활성점 모형과 일치한다. 특히 주목되는 결과는 에틸렌 삽입 전후 Zr-N 결합길이가 2.23~2.34 Å 사이에서 변하지만 Zr-O 결합길이는 변하지 않는다(그림 16 위). 바로 이 '유동적 전자 교환(flexible electron exchange)' 특성이 전자와 공간의 수요 를 만족시켜 에틸렌 단량체의 결합과 삽입에 유리하여 높은 중합 활성을 일으킨다고 추정하며 이는 페닐-이민 리간드의 중요한 특 성이다. 본 저자들의 가능한 해석은 : 에틸렌이 삽입된 후 Zr-N 결 합길이가 에틸렌이 결합한 후의 결합길이보다 짧기때문에 에틸렌 이 차지할 유효공간을 증대시켜 에틸렌 단량체의 결합에 유리하 다. 단량체가 결합하여 공간이 충분할 경우 유동전자(flexible electron)의 역할로 단량체의 삽입을 완성한다. 단량체 삽입이 다 시 유효공간을 증대시킨다(에틸렌이 삽입된 후 Zr-N 결합길이 는 에틸렌의 결합 전 결합길이와 같다). 이상과 같이 중합반응은 순화하여 진행된다.

표 5에 ¹³C NMR 분석으로 얻은 착물 1~3/MAO 촉매계에 의

Polymer Science and Technology Vol. 17, No. 2, April 2006

표 5. '	³ C NMR	분석으로	얻은	착물 1-3 /MAO	촉매계에	의한	폴리프로필렌의	미세구조	데이터
---------------	--------------------	------	----	--------------------	------	----	---------	------	-----

		Chain-end structures						Regio structures in diad			
Entry	Complex	chan cha si deta es							sequence		
		<i>n</i> -Propyl	Isobutyl	Allyl	Butenyls ^a	Vinylidene	Sat./Unsat. ^b	HT	HH	ΤT	
1	1	100	0	5	26/55/2	12	1.0	n.q. ^c	n.q. ^c	none	
2	1	100	0	7	27/54/3	9	1.0	n.q. ^c	n.q. ^c	none	
3	1	100	0	13	31/46/5	6	1.0	n.q. ^c	n.q. ^c	none	
4	2	100	0	41	27/21/8	3	1.0	1.5	1	n.q. ^c	
5	2	100	0	47	23/30/0	0	1.0	5	1	n.q. ^c	
6	2	100	0	50	23/18/7	3	1.0	1.3	1	n.q. ^c	
7	3	78	22	13	27/53/7	0	1-1.2	5	1	n.q. ^c	
8	3	65	35	20	23/43/5	9	1 - 1.4	4 - 5	1	n.q. ^c	
9	3	50	50	29	18/23/5	25	2-2.2	2-3	1	n.q. ^c	

"Ratio of 1-butenyl/cis-butenyl/trans-butenyl. "Ratio of saturated/unsaturated chain-ends." Detected but could not be quantified.

Scheme 5. FI촉매에 의한 프로필렌 중합의 개시와 사슬전개반응 메커니즘.32

한 폴리프로필렌의 미세구조 데이터를 나열했다. 실험 1-6의 데이 터로부터 (1) 중합물의 말단기에 n-프로필기만 포함되어 있고 iso-부틸기와 n-부틸기는 포함되어 있지 않은 점으로 미루어볼 때, 중합반응 시 삽입된 첫 번째 단량체가 1, 2-첨가반응 형태로 금속-수소 결합 사이에 삽입되고 이어서 두 번째 단량체가 역시 1, 2-첨가반응 형태로 삽입된다. (2) 포화 및 불포화 말단기 수량 이 같으며 후자는 *π*-아릴기, 1-부테닐기, *cis*-2-부테닐기, trans-2-부테닐기, 비닐리덴기의 혼합물로 조성되고 있다. 중 합물 사슬 모두 β-수소 전이를 거쳐 반응이 종결된다. 모든 중 합반응 과정은 Scheme 5와 같이 정리할 수 있다. 이 중 매개 불 포화 사슬의 구조는 마지막에 삽입된 두 개의 단량체의 regioselectivity를 결정한다. 단량체가 1, 2-첨가반응으로 잇따라 삽입된 후 β-수소 전이를 거쳐 비닐리덴 말단을, 1, 2-첨가반 응으로 삽입한 후 2, 1-첨가반응을 따르면 세가지 부테닐 말단 을, 2, 1-첨가반응으로 계속 삽입하면 π-알릴 말단을 형성한다. (3) 불포화 말단기 중 대부분이 π-알릴기와 부테닐기로 2, 1첨가반응으로 삽입하면 전개 반응이 느려진다. (4) 착물 2로부터 생성한 부테닐기의 함량이 착물 1보다 적음으로 전자가 2, 1-첨 가반응으로 삽입한 후에라도 1, 2-첨가반응으로 삽입할 수 있기 에 계속 전개반응 결과 후자로부터 얻은 중합물의 분자량보다 크 다. 같은 조건에서 전자 M_n =1,460, 후자 M_n = 210이다. (5) 착 물 2가 2, 1-첨가반응으로 삽입 후 1, 2-첨가반응으로도 삽입할 수 있기에 머리-머리 결합이 형성되어 정의할 수 있으나 착물 1에서는 정의가 어렵다.

상기 Zr 촉매계에서는 1, 2-첨가반응이 주요 전개 반응이나 반대로 Ti 촉매계에서는 2, 1-첨가반응으로 진행된다.

5. 응용 및 결론

FI촉매로 초고분자량 폴리에틸렌, 폴리프로필렌, 에틸렌-프로 필렌 공중합체, 비닐기 함량이 큰 폴리에틸렌, 다분산 폴리에틸렌, 폴리프로필렌의 각종 입체이성질체 그리고 불규칙한 α-올레핀 중합물 등의 합성에 성공했다. 이들은 인조 골격, 인조 가슴뼈, 방 탄 내의, 친화제, 첨가제, 접착제 그리고 각종 기능성 재료 등으로 잠재한 응용성이 매우 크다.⁴⁷ 보도에 의하면 Mitsui Chemicals에 서 이 촉매를 이 회사 생산기술 연구소에 맡겨 폴리에틸렌 생산 공정을 개발하고 있다.

합성 측면에서 본다면 가장 두드러진 성과는 이러한 중합물 합 성보다 오히려 중합물 합성과정을 설계, 통제하는 것이다. 예로 중 합 활성을 어떻게 통제하고, 중합물의 분자구조를 어떻게 통제하 는가 하는 것이다. 가령 착물 5 Zr-FI 촉매로 폴리에틸렌 공업 화 생산을 진행하는 경우 단 중합 온도만 변화시키면 세가지 중합 물을 얻을 수 있다. 가령 착물 15 Ti-FI 촉매로 폴리에틸렌 공업화 생산을 진행하는 경우 기대하는 성능을 가지고 있는 각종 기능성 폴 리에틸렌을, 착물 20, V- FI 촉매로 폴리에틸렌 공업화 생산을 진 행하는 경우 저비용, 좁은 분자량분포, 고밀도의 중합물을 생산할 수 있다. Cr-FI 촉매를 이용한 "High-throughput Screening (HTS)" 기술을 활용하여 일차적 실험으로 완성하는 연구도 역시 주목 할만하다.⁴⁸

총괄적으로 FI촉매가 올레핀 중합용 고성능 촉매임은 의심할 바 없으며 학술과 생산 연구에 모두 현실적이며 잠재능력은 매우 크 다. 이상의 성과 중 컴퓨터 과학을 촉매 설계에 응용한 점을 다시 강조하고 싶고, 양자화학 분야에 종사하고 있는 학자들의 관심도 기대한다. 마지막으로 세계적으로 우수한 학생들을 가르치고 있 는 한국의 교수님들 가운데 노벨 화학상 수상자가 조속히 배출될 것을 기원한다.

감사의 글: 본 총설은 한국과학재단지정 우수연구센터인 '초미 세화학공정시스템 연구센터'(ERC)와 한국과학재단과 한국과학기 술단체총연합회의 '해외고급과학두뇌초빙활용'(Brain Pool) 사 업에 의해 지원되었다.

참고문헌

- V. C. Gibson and S. K. Spitzmesser, *Chem. Rev.*, 103, 283 (2003).
- P. J. Shapiro, E. Bunel, W. P. Schaefer, and J. E. Bercaw, Organometallics, 9, 867 (1990).
- J. Strauch, T. H. Warren, G. Erker, R. Frohlich, and P. Saarenketo, *Inorg. Chim. Acta*, 810, 300 (2000).
- P. D. Hustad, J. Tian, and G. W. Coates, J. Am. Chem. Soc., 123, 5134 (2001).
- J. Huang, B. Lian, Y. Qian, W. Zhou, W. Chen, and G. Zheng, *Macromolecules*, 35, 4871 (2002).
- J. P. Corden, W. Errington, P. Moore, and M. G. H. Wallbridge, *Chem. Commun.*, 323 (1999).
- P. R. Woodman, I. J. Munslow, P. B. Hitchcock, and P. K. Scott, J. Chem. Soc., Dalton Trans., 4069 (1999).
- P. R. Woodman, N. W. Alcock, I. J. Munslow, C. J. Sanders, and P. Scott, J. Chem. Soc., Dalton Trans., 3340 (2000).
- 9. V. C. Gibson, S. Mastroianni, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White, and D. J. Williams, J. Chem. Soc., Dalton

Trans., 1969 (2000).

- D. J. H. Emslie, W. E. Piers, and R. MacDonald, J. Chem. Soc., Dalton Trans., 293 (2002).
- D. J. H. Emslie, W. E. Piers, M. Parvez, and R. MacDonald, Organometallics, 21, 4226 (2002).
- P. G. Hayes, G. C. Welch, D. J. H. Emslies, C. L. Noack, W. E. Piers, E. Warren, and M. Parvez, *Organometallics*, 22, 1577 (2003).
- 13. P. D. Knight, A. J. Clarke, B. S. Kimberley, R. A. Jackson, and P. Scott, *Chem. Commun.*, 352 (2002).
- 14. D. J. Jones, V. C. Gibson, S. M. Green, and P. J. Maddox, *Chem. Commun.*, 1038 (2002).
- T. Fujita, Y. Tohi, M. Mitani, S. Matsui, J. Saito, M. Nitabaru, K. Sugi, H. Makio, and T. Tsutsui, Eur. Pat, 0874005, USP 6309997, CAP 2235905.
- S. Matsui, M. Mitani, J. Saito, Y. Tohi, H. Makio, N. Matsukawa, Y. Takagi, K. Tsuru, M. Nitabaru, T. Nakano, H. Tanaka, N. Kashiwa, and T. Fujita, *J. Am. Chem. Soc.*, 123, 6847 (2001).
- R. X. Wang, X. Z. You, Q. J. Merg, E. A. Minz, and X. R. Bu, Synth. Commun., 24, 1757 (1994).
- S. Matsui, Y. Tohi, M. Mitani, J. Saito, H. Makio, H. Tanaka, M. Nitabaru, T. Nakano, and T. Fujita, *Chem. Lett.*, 1065 (1999).
- N. Matsukawa, S. Matsui, M. Mitani, J. Saito, K.Tsuru, N. Kashiwa, and T. Fujita, *J. Mol. Catal., A: Chem.*, 169, 99 (2001).
- S. Ishii, J. Saito, M. Mitani, J. Mohri, N. Matsukawa, Y. Tohi, S. Matsui, N. Kashiwa, and T. Fujita, *J. Mol. Catal., A: Chem.*, 179, 11 (2002).
- J. Saito, M. Mitani, S. Matsui, Y. Tohi, H. Makio, T. Nakano, H.Tanaka, N. Kashiwa, and T. Fujita. *Macromol. Chem. Phys.*, 203, 59 (2002).
- J. Saito, M. Onda, S. Matsui, M. Mitani, R. Furuyama, H. Tanaka, and T. Fujita, *Macromol. Rapid Commun.*, 23, 1118 (2002).
- Y. Nakayama, H. Bando, Y. Sonobe, H. Kaneko, N. Kashiwa, and T. Fujita, *J. Catal.*, 215, 171 (2003).
- 24. S. Matsui and T. Fujita, Catal. Today, 66, 63 (2001).
- N. Matsukawa, M. Mitani, and T. Fujita, Jap. J. Polym. Sci. Tech., 59, 158 (2002).
- S. Ishii, J. Saito, S. Matsuura, Y. Suzuki, R. Furuyama, M. Mitani, T. Nakano, N. Kashiwa, and T. Fujita, *Macromol. Rapid Commun.*, 23, 693 (2002).
- Y.Tohi, T. Nakano, H. Makio, S. Matsui, T. Fujita, and T. Yamaguchi, *Macromol. Chem. Phys.*, 205, 1179 (2004).
- Y.Tohi, H. Makio, S. Matsui, M. Onda, and T. Fujita, *Macromolecules*, **36**, 523 (2003).
- R. Furuyama, J. Saito, S. Ishii, M. Mitani, S. Matsui, Y.Tohi, H. Makio, N. Matsukawa, H. Tanaka, and T. Fujita, *J. Mol. Catal.*, *A: Chem.*, 200, 31 (2003).
- J. Saito, M. Mitani, J. Mohri, S. Ishii, Y. Yoshida, T. Matsugi, S. Kojoh, N. Kashiwa, and T. Fujita, *Chem. Lett.*, 576 (2001).
- M. Mitani, R. Furuyama, J. Mohri, J. Saito, S. Ishii, H. Terao, N. Kashiwa, and T. Fujita, *J. Am. Chem. Soc.*, 124, 7888 (2002).

- 32. M. Mitani, R. Furuyama, J. Mohri, J. Saito, S. Ishii, H. Terao, N. Kashiwa, and T. Fujita, *J. Am. Chem. Soc.*, 125, 4293 (2003).
- J. Saito, M. Mitani, J. Mohri, Y. Yoshida, S. Matsui, S. Ishii,
 S. Kojoh, N. Kashiwa, and T. Fujita, *Angew. Chem.*, 113, 3002 (2001).
- 34. J. Saito, M. Mitani, J. Mohri, Y.Yoshida, S. Matsui, S. Ishii, S. Kojoh, N. Kashiwa, and T. Fujita, *Angew. Chem. Int. Ed.*, 40, 2918 (2001).
- 35. M. Mitani, J. Mohri, Y. Yoshida, J. Saito, S. Ishii, K. Tsuru, S. Matsui, R. Furuyama, T. Nakano, H. Tanaka, S. Kojoh, T. Matsugi, N. Kashiwa, and T. Fujita, *J. Am. Chem. Soc.*, 124, 3327 (2002).
- J. Saito, M. Mitani, M. Onda, J. Mohri, S. Ishii, Y. Yoshida, T. Nakano, H. Tanaka, T. Matsugi, S. Kojoh, N. Kashiwa, and T. Fujita, *Macromol. Rapid Commun.*, 22, 1072 (2001).
- 37. M. Mitani, Y. Yoshida, J. Mohri, K. Tsuru, S. Ishii, S. Kojoh, T. Matsugi, J. Saito, N. Matsukawa, S. Matsui, T. Nakano, H. Tanaka, N. Kashiwa, and T. Fujita, WO Pat, 55231.

- S. Ishii, M. Mitani, J. Saito, S. Matsuura, S. Kojoh, N. Kashiwa, and T. Fujita, *Chem. Lett.*, 740 (2002).
- Y. Nakayama, H. Bando, Y. Sonobe, and T. Fujita, J. Mol. Catal., A: Chem., 213, 141 (2004).
- Y. Nakayama, H. Bando, Y. Sonobe, and T. Fujita, Bull. Chem. Soc. Jpn., 77, 617 (2004).
- Y. Nakayama, H. Bando, Y. Sonobe, Y. Suzuki, and T. Fujita, *Chem. Lett.*, 32, 766 (2003).
- 42. H. Makio and T. Fujita, Macromol. Symp., 213, 221 (2004).
- S. Ishii, R. Furuyama, N. Matsukawa, J. Saito, M. Mitani, H. Tanaka, and T. Fujita, *Macromol. Rapid Commun.*, 24, 452 (2003).
- M. Lamberti, D. Pappalardo, A. Zambelli, and C. Pellecchia, *Macromolecules*, 35, 658 (2002).
- H. Makio, Y. Tohi, J. Saito, M. Onda, and T. Fujita, *Macromol. Rapid Commun.*, 24, 894 (2003).
- P. D. Hustad, J. Tian, and G. W. Coates, J. Am. Chem. Soc., 124, 3614 (2002).
- Y. Nakayama, M. Mitani, H. Bando, and T. Fujita, *Chem. Inform.*, 35, 16 (2004).
- M. Mitani, J. Saito, S. Ishii, Y. Nakayama, H. Makio, N. Matyukawa, S. Matsu, and T. Fujita, *Chem. Rec.*, 4, 137 (2004).