

분자레벨에서 제작된 나노 태양전지 기술

이원주 · 이수형 · 한성환

1. 서론

1839년 프랑스의 물리학자 Edmond Becquerel은 전해질 (electrolyte)에 담근 전극(electrode) 사이에서 재료들이 빛을 받 을 때 작은 양의 전류가 흐르는 것을 처음으로 발견하였다.¹ 또한 1876년 Heinrich Hertz가 Selenium과 같은 고체에서도 같은 현 상이 발생됨을 관찰하였다.¹ 이런 현상을 광전효과(photovoltaic effect)라고 하며, 그 같은 재료를 태양전지(solar cells or photovoltaic cells) 라고 부른다. 당시의 빛 전환 전류 효율은 1~2% 정 도였을 뿐이다.

본격적인 photovoltaic (PV) system의 상업화는 1940년대 와 1950년대 사이에서 이루어졌는데, 1941년 적정한 효율을 내는 실리콘(Si) 태양전지가 연구되었고, 1954년에 이르러 고순도 결정질(crystalline) 실리콘을 생산할 수 있는 Czohralski 방법이 개발되어 Bell 연구소에서 4%의 효율을 내는 첫 번째 결정질 실리 콘 태양전지가 만들어졌다.² 그 후 태양전지의 연구가 다소 둔화되 며 진행되다가, 1970년대 에너지 위기를 직면하여 태양전지가 에너 지 및 환경문제를 해결할 수 있는 대안으로 각광을 받으면서 미국 정부와 산업계에게서는 효율이 높고 상업화 가능성이 큰 태양전지 를 개발할 필요성이 크게 요구되어 많은 과학자들이 넓은 영역에서 연구를 진행하였다.³⁻¹² 이후로 태양전지는 점점 더 대면적화 하게 되고 생산단가도 계속 낮아지는 발전경로를 거치게 된다. 1980년대 에 이르러 새로운 재료의 태양전지, 즉 CdTe, CuInSe₂, TiO₂ 등을 이용한 나노구조체의 태양전지가 탄생하게 되었고, 최근에는 나노

구조체를 이용한 태양전지의 연구개발과 더불어 분자레벨에서 태 양전지의 구조를 조절함으로써 작동 원리를 이해하고 소자의 효율 을 높이고자 하는 연구 또한 학술적인 측면에서 관심을 가지게 되었 다.¹³⁻¹⁵ 본 고에서는 이와 같은 분자레벨의 태양전지의 원리와 특성, 그리고 제작하는 방법에 대해 간단히 논하고자 한다.

2. 분자레벨의 나노 태양전지

2.1 분자레벨의 태양전지 원리

분자레벨의 태양전지는 일반적으로 기존의 염료감응형 태양전지 와 작동 원리가 같다. 염료 감응형 태양전지의 기본구조는 **그림 1**에 서 보는 것과 같이 샌드위치 구조 속에, 전도성 투명전극에 접착되 어 있는 나노입자의 다공질 TiO₂, 그리고 이 TiO₂ 입자 위에 단분

 ·
 서울대학교 화학과(학사)

 한국과학기술연구원(KAIST)(석사)

 Pennsylvania State University, 화학과 (박사)

 ~
 University of Chicago, 화학과

 39
 (Post-Doc.)

 ~
 한국과학기술연구원(KIST),

 02
 나노환경센터 센터장

 ~
 한양대학교 자연과학부 화학과 교수

Self-Assembled Molecular Solar Cells

한양대학교 자연과학부 화학과(Wonjoo Lee, Sung-Hwan Han, Department of Chemistry, Hanyang University, Haengdang-dong 17, Sungdong-ku, Seoul 133-791, Korea) e-mail: shhan@hanyang.ac.kr 전북대학교 공과대학 환경.화학공학부(Soo-Hyoung Lee, Division of Environmental & Chemical Engineering, Chonbuk National University, Duckjin-dong 664-14, Jeonju 561-756, Korea) e-mail: shlee66@chonbuk.ac.kr

그림 1. 염료 감응형 태양전지의 원리 모식도.

자층으로 코팅된 염료 분자와 두 전극 사이에 있는 50~100 um 두께의 공간을 채우고 있는 산화환원용 전해질 용액이 들어있는 형 태를 지니고 있다. 전극은 양쪽을 모두 투명전극을 사용하기도 하 지만, 일반적으로 에너지효율을 높이기 위하여 태양광이 입사하는 반대쪽 전극은 반사도가 좋고, 산화환원에 촉매로 사용되는 백금을 사용하고 있다.^{16.17}

태양광이 전지에 입사되면 광양자(photon)는 먼저 염료 분자에 의해 흡수된다. 염료는 태양광 흡수에 의해 여기 상태로 되고 전자를 TiO₂의 전도대로 보낸다. TiO₂ 전도대에 위치한 전자는 전극으로 이동하여 외부회로로 흘러가서 전기에너지를 전달하고, 에너지를 전 달한 만큼 낮은 에너지상태가 되어 상대 전극으로 이동한다. 염료는 TiO₂에 전자 전달한 만큼 낮은 에너지상태가 되어 TiO₂에 전달한 전자수 만큼 전해질용액으로부터 전자를 공급 받아 원래의 상태로 돌아가게 된다. 이 때 사용되는 전해질은 iodide/triodide 쌍으로써 산화환원에 의해 상대전극으로부터 전자를 받아 염료에 전달하는 역할을 담당한다. 이에 따라 전지의 개방회로 전압은 TiO₂ 반도체 의 페르미 에너지(fermi level) 준위와 전해질의 산화환원 준위의 차이에 의해 결정된다.¹⁷

2.2 분자레벨의 태양전지 제작 방법

분자레벨의 태양전지가 기존의 염료감응형 태양전지와 원리는 같 지만 기존의 염료감응형에서 쓰는 태양전지를 분자레벨에서 출발 하여 만들기 때문에 기존의 태양전지를 만드는 방법과 근본적인 차 이점을 두고 시작한다. 분자레벨의 태양전지를 만들기 위해서는 기 존의 염료감응형 태양전지에서 전자 받개로 사용되는 *n*형 화합물 반도체 막을 사용하지는 않는다. 분자레벨의 태양전지를 만들기 위 해서는 자기조립 박막(self-assembled monolayers, SAMs) 형 성 방법을 이용하는데, 자기조립 박막이란 분자가 자발적인 반응을 통해 특정 기질 표면에 흡착되어 화학적 결합을 형성하여 결정성 분 자막을 이루는 것을 의미한다.^{18,19} 이러한 자기조립 현상은 생체물 질이나 여타 다른 물질에서도 발견되는 근본적인 현상이다. 자기조 립된 유기 분자층들은 그 자체로서 표면의 성질을 변형시키기도 하 지만, 여러 가지 기능성 물질과 선택적인 결합을 할 수 있어서 보다 우수하고 다양한 형태와 기능의 표면을 만들 수 있기 때문에 매우 중요한 방법론으로 인식되고 있다.²⁰

2.3 분자레벨의 태양전지를 위한 자기조립 박막

분자레벨의 태양전지를 만들기 위해서는 자기조립 박막을 형성

그림 2. 아민 기능기가 ITO 위에 자기조립을 형성하는 모습.

할 수 있는 *n*형 전자받개와 *p*형 전자주개의 물질을 선택해야 한다. 전자받개의 물질로는 바이올로젠(viologen)계통의 물질들을 사용 하며 전자주개로는 빛을 흡수할 수 있는 루테늄(ruthenium) 및 포 르피린(porphyrin)계의 염료를 주로 사용한다.

음전국으로는 ITO 기판과 금 기판을 사용할 수 있다. 금 기판에서 싸이올 기능기를 가진 물질들이 자기조립을 잘 형성하는 것과 마찬가 지로 ITO 기판에서는 아민 기능기를 가진 물질들이 자기조립을 한다 는 것이 알려져 있다.^{20,21} 분자레벨의 태양전지는 음전극 기판에 전자 받개의 자기조립 박막을 먼저 형성시킨 후 그 위에 빛을 흡수할 수 있 는 전자주개 물질을 다시 자기조립을 하여 태양전지를 만든다. ITO 표면에 전자 받개화합물을 자기조립 하기 위하여 대표적 전자 받개 물질인 바이올로젠 기능기에 아민 기능기를 더한 새로운 화합물을 설 계하였다. **그림 2**는 ITO 기판 위에 아민 기능기를 포함하는 바이올 로젠계 전자 받개 물질이 자기 조립되는 모습을 나타낸 것이다.²²

음전극 위에 자기 조립되어진 전자 받개 물질의 경우 전기화학적 방법과 분광학적 방법을 사용하여 정성 및 정량이 가능하다. 전자 받개인 바이올로젠의 경우 전기화학적으로 산화환원이 되기 때문에 바로 측정이 가능하며 또한 그 위에 헤테로폴리산(phosphomolybdic acid) 같이 전기화학적으로 활성화가 가능한 물질을 다시 자 기 조립을 해서 간접적으로 측정하는 방법도 있다.²³ 두 가지 모두 분 광학적 정량 방법과 거의 비슷한 수치의 자기조립 박막 분자의 양을 측정할 수 있다. **그림 3**는 ITO 위에 바이올로젠이 자기 조립되어 올 라가고 그 위에 전기화학적으로 측정할 수 있도록 몰리브덴 계열의 물질이 올라가는 모습과 이것의 전기화학적 특성 그래프를 나타내 고 있다.²³

이렇게 올라간 자기조립 박막은 단위 면적당 4.3×10⁻¹⁰ mol/ cm²의 개수의 분자가 올라간다. 빛을 흡수하는 물질로는 루테늄계 열의 N3 화합물을 이용하는데 N3는 리간드에 카르복실산(carboxylic acid)을 갖고 있어 염기성인 아민과 잘 산-염기 화합물 을 형성하게 되며, 바이올로젠과 루테늄화합물간의 에너지레벨도 잘 조화를 이룬다. **그림 4**는 자기조립 박막 위에 전자 반개와 전자 주 개(빛 흡수층)이 형성된 모습이다.²³

빛을 흡수하는 층을 루테늄계열과 같은 유기금속화합물이 아닌 무기반도체를 사용하는 연구도 이스라엘 I. Willler에 의해 보고되었 다. 이 연구팀은 위에서 언급한 방법과 동일하게 음전극에 전자 받 개로써 바이올로젠을 자기조립 형성시키고, 빛을 흡수하는 물질로 카드늄황(CdS) 나노입자를 자기조립으로 다시 형성시켜 소자를 제 작하였다. **그림 5**는 바이올로젠 위에 카드늄황이 자기조립으로 올 라간 모습과 빛이 조사되었을 때 전자가 전달되는 모습을 나타낸 것이다.²⁴

그림 3. ITO 위에 형성된 바이올로젠 자기 조립박막과 헤테로폴리산의 전기화학적 특성.

그림 4. (a) ITO 기판 위에 전자 주개(N3 dye)와 전자 받개(바이올로젠)가 형성된 모습, (b) 각 물질의 에너지 레벨.

이렇게 형성된 분자레벨의 태양전지는 70 nA의 전류를 발생시 킨다. 더 많은 전류를 발생시키기 위해서는 빛을 흡수하는 층과 전자 를 받는 층 또는 음전극 사이에 도체로 이루어진 중간층(buffer layer)를 형성하기도 한다. 중간층을 형성할 때도 전자 받개나 빛 을 흡수하는 층과 마찬가지로 자기조립을 이용한다. **그림 6**은 **그림** 5에서 형성한 분자레벨 태양전지의 전류를 향상시키기 위해서 중 간층으로 금 나노입자를 이용해 자기조립으로 형성시킨 모습이다.²⁵ **그림 7**은 분자레벨의 태양전지에서 전류를 향상시키기 위한 노 력으로 금 나노입자를 사용한 경우 증가하는 전류 특성을 보여준다.

그림 5. 바이올로젠과 카드늄황 나노입자가 자기조립에 의해서 형성된 모습.

그림 6. 금 나노입자 중간층 형성에 의한 분자레벨 태양전지의 효율향상.

그림 7. 금 나노입자를 이용한 CdS 태양전지: (a) 금 기판/금 나노입자, (b) 금 기판/CdS 나노입자, 그리고 (c) 금 기판/금 나노입자/CdS 나노입자.

금 나노입자가 없을 때 70 nA의 전류가 발생되었지만 중간층으로 금 나노입자를 사용했을 경우는 태양전지 전류값이 300 nA로 증가 함을 알 수가 있다.²⁶

분자레벨의 태양전지에서 전류 발생량을 향상시키기 위해서 탄소

그림 8. 탄소 나노튜브(CNT)를 이용한 분자레벨의 태양전지.

나노튜브(CNT)를 이용한 경우도 눈 여겨 볼만하다. 탄소나노튜브 는 우수한 기계적 특성, 전기적 선택성, 뛰어난 전계방출 특성, 고효 율의 수소저장매체 특성 등을 지니는 다양한 응용성을 가지는 물질 이다. 합성방법으로는 전기방전법, 열분해법, 레이저증착법, 플라즈 마 화학 기상 증착법, 열화학기상증착법, 전기분해방법, flame 합성 방법 등이 있다. 탄소나노튜브를 이용할 경우 전자의 흐름이 빨라지 게 되고 발생 전류가 증가한다. **그림 8**은 탄소나노튜브를 이용한 분자레벨의 태양전지를 묘사한 그림이다.²⁶

빛을 흡수하는 또 다른 물질로 생체물질로 알려진 포르피린(porphyrin)을 이용해서 분자레벨의 태양전지를 만들려는 연구도 보고 되고 있다. 포르피린은 생체 내에서의 산화환원반응에 중요한 구실 을 하는 혈색소, 시토크롬, 엽록소 등의 색소성분을 구성하는 화합물 이다. 천연으로 발견되는 포르피린류 및 그것에서 간단히 유도되는 곁사슬의 종류 및 붙는 위치에 따라 I, II, III형 등으로 불린다. 포르 피린류의 구조는 20세기 초부터 연구되었는데, H. Fisher가 합성에 성공한 공로로 노벨상을 받기도 했다. 현재는 동위원소를 사용한 연 구에 의해서 생합성의 경로도 완전히 해명되었다.

포르피린을 ITO 위에 바로 자기조립을 하는 경우는 전자가 ITO 방향으로 흘러가지 않고 전해질 방향으로 전자가 흘러갈 수 있게 태양전지를 설계한다. 이 경우는 포르피린이 빛을 흡수하는 층이기 때문에 전자 받개 물질을 포르피린 위에 자기조립으로 형성한다. 즉 포르피린이 양전극 위에 자기조립을 형성하게 되는 것이다. 전해질 로는 전자를 주는 I⁻/I₃⁻가 사용되지 않으며, 전자를 받을 수 있는 메틸바이올로젠(methyl viologen, MV⁺²)이 이용된다. 메틸바이올 로젠은 낮은 LUMO 값을 갖으면 약 4.0 eV의 에너지 레벨을 갖고 있다. **그림 9**은 전자가 전해질 방향으로 전달되도록 태양전지를 설 계했을 때 각 단계에서의 에너지 준위를 보여준다.²⁷

한편 우리나라에서는 카이스트(KAIST) 박준택 교수팀에서 분 자레벨의 태양전지를 활발히 연구 중에 있다. 박준택 교수팀에서는 플로렌 계열의 C60을 이용해서 기능기를 붙임으로써 분자레벨의 태 양전지를 형성하였다. 이 물질은 전자 받개의 능력을 갖고 있고 있 으며, 표면에 자리조립 형성이 가능하다. 또한 빛을 흡수하여 전자 를 여기 시키는 염료로써는 위에서 언급한 포피린계열의 물질을 형 성하였다. **그림 11**은 박준택 교수팀에서 C60 유도체와 포피린계 열의 유도체를 이용하여 분자레벨의 태양전지를 만든 모습과 그에

그림 9. 포르피린과 메틸바이올로젠으로 이루어지는 태양전지의 에너지 준위.

그림 10. 포르피린 자기조립에 의한 분자레벨 태양전지 형성.

그림 11. C60유도체와 포르피 유도체를 이용한 분자레벨 태양전지 형성.

대한 광전류 측정 모습이다. 28-30

결론 및 향후 전망

현재 태양전지의 향후 전망을 살펴보면 **그림 10**에 나타낸 바와 같이 2010년까지 전망은 연간 성장률(15~25%)에 따라 연간 1

그림 11. 태양전지의 Payback Time.

~2.3 GW로 전망하고 있다(Bank Sarasin Reprot 2000. P. Maycock). 2001년 발간된 미국의 태양광산업 로드맵에서는 2020 년 시장이 연간 17 GW가 될 것으로 예상한 바 있다.³¹ 여기에 대 하여 현재 기술개발이 진척되고 있는 저가 고효율의 신형 박막 태 양전지 기술이 경제성을 확보할 경우 그 시장은 전체 전력시장으로 확대될 것이다. 이런 태양전지의 방대한 시장과 학문적인 매력 때문 에 태양전지는 기초 과학 분야와 응용 과학 분야 양쪽에서 많은 연 구가 진행되고 있다. 그럼에도 불구하고 자기조립을 이용하는 분자 레벨의 나노 태양전지 개발은 아직은 학술적인 부분에 있어 많은 연구가 진행 중에 있으며 그 효율이나 유용성 면에 있어서는 많은 기술 개발이 필요한 분야이다. 그러나 분자레벨의 태양전지는 박 막태양전지 및 나노 태양전지 메커니즘을 규명하는데 밑거름이 되고 있으며 앞으로도 태양전지의 보다 높은 효율과 낮은 생산 가 격을 위해서 많은 연구가 진행되리라 생각한다.

참고문헌

- 1. Photovoltaic Insider's Report, Feb. 1998.
- 2. 재생에너지 보급현황, 에너지자원기술개발지원센터, 1997.
- 3. B. O'Regan, M. Grätzel, Nature, 353, 737 (1991).
- K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa. *Chem. Commun.*, 569 (2001).
- Z.-S. Wang, M. Yanagida, K. Sayama, and H. Sugihara, *Chem. Mater.*, 18, 2912 (2006).
- R. S. Mane, W. J. Lee, H. M. Pathan, and S.-H. Han, J. Phys. Chem. B., 109, 24254 (2005).
- V. V. Todkar, R.S. Mane, C. D. Lokhande, and S.-H. Han, J. Photoch. Photobio. A., 181, 33 (2006).
- R. S. Mane, S. P. Kajve, C. D. Lokhande, and S.-H. Han, *Vacuum*, **80**, 631 (2006).
- R. S. Mane, H. M. Pathan, C. D. Lokhande, and S.-H. Han, *Sol. Energy*, 80, 185 (2006).
- S. K. Min, K. D. Jung, O. S. Joo, R. S. Mane, and S.-H. Han. *Electrochem. Commun.*, 8, 223 (2006).
- R.S. Mane, Y. H. Hwang, C. D. Lokhande, S. D. Sartale, and S.-H. Han, *Appl. Surf. Sci.*, 246, 271 (2005).

- R. S. Mane, S.-J. Noh, and S.-H. Han, *Appl. Surf. Sci.*, 252, 1981 (2005).
- J. Chu, X. Li, and J. Tang, *Colloid. Surface. A.*, 257–258, 41 (2005).
- T. Fushimi, A. Oda, H. Ohkita, and S. Ito, J. Phys. Chem. B., 108, 18897 (2004).
- L. Sheeney-Haj-Ichia, B. Basnar, and I. Willner, Angew. Chem. Int. Edit., 44, 78 (2005).
- D. Gust, T. A. Moore, and A. L. Moore, *Accounts. Chem. Res.*, 34, 40 (2001).
- 17. M. Graltzel, Inorg. Chem., 44, 6841 (2005).
- 18. S.-Y. Oh and S.-H. Han, *Langmuir*, **16**. 6777 (2000)
- 19. S.-Y. Oh and S.-H. Han, Synthetic Metals., 121, 1369 (2001).
- S.-Y. Oh, Y-J. Yun, D.-Y. Kim, and S.-H. Han, *Langmuir*, 15, 4690 (1999).
- 21. R. Baron, C.-H. Huang, D. M. Bassani, A. Onopriyenko, M. Zayats, and I. Willner, *Angew. Chem. Int. Edit.*, 44, 2 (2005).
- 22. K.-H. Hyung and S.-H. Han, Syn. Met., 137, 1441 (2003).
- K.-H. Hyung, D.-Y. Kim, and S.-H. Han, New J. Chem., 29, 1022 (2005).
- 24. S.-Y. Oh, Y.-J. Yun, K.-H. Hyung, and S.-H. Han, *New J. Chem.*, 28, 497 (2004).
- L. Sheeney-Haj-Ichia, B. Basnar, and I. Willner, Adv.. Mater, 14, 1323 (2002).
- L. Sheeney-Haj-Ichia, B. Basnar, and I. Willner, Adv.Funct. Mater., 14, 416 (2004).
- 27. H. Yamada, H. Imahori, Y. Nishimura, I. Yamazaki, T. K. Ahn, S. K Kim, D. Kim, and S. Fukuzumi, *J. Am. Chem. Soc.*, 125, 9129 (2003).
- 28. Y.-J. Cho, T. K. Ahn, H. Song, K. S. Kim, C. Y. Lee, W. S. Seo, K. Lee, S. K. Kim, D. H. Kim, and J. T. Park, *J. Am. Chem. Soc.*, **127**, 2380 (2005).
- K. Lee, Y. J. Choi, Y.-J. Cho, C. Y. Lee, H. Song, C. H. Lee, Y. S. Lee, and J. T. Park, *J. Am. Chem. Soc.*, 126, 9837 (2004).
- G. Lee, Y.-J. Cho, B. K. Park, K. Lee, J. T. Park, J. Am. Chem. Soc., 125, 13920 (2003).
- "Life Cycle Assessment of Silicon Photovoltaic System", *Progress in photovoltaics: Research and Application*, 13, 429 (2005).