

염료감응 태양전지의 반도체 전극재료

신유주

1. 서론

염료감응 태양전지(DSSC; dye-sensitized solar cell), 유기 태양전지와 같은 새로운 태양전지의 개발은 석유자원이 금세기에 모두 고갈될 것이라는 인식이 대중에 확산되면서 빠른 속도로 전 개되고 있다. 향 후 50년 이내에 인류가 필요로 하는 에너지는 두 배 이상으로 증가할 것이기 때문에 이러한 신재생 에너지의 개발 은 필수 불가결한 것으로 생각되는 것이다. 또한 대기오염, 온실 효과 등 환경 재난의 우려가 날로 심각해지고 있는 현실도 이러한 태양전지에 관한 연구에 관심이 모아지는 원인이 되고 있다. 여기 에 기존의 실리콘 태양전지는 높은 가격과 원료고갈(실리콘)의 문 제를 안고 있고, 유기태양전지는 화학적 불안정성과 낮은 에너지 변환 효율로 인하여 아직은 기초연구에 주력할 시기이다. 이러한 현실에서 DSSC는 낮은 가격과 비교적 높은 효율로 차세대 태양전 지로서 주목받고 있다. DSSC는 광합성 원리를 적용한 광화학전지 로 1991년 스위스의 그레첼 그룹에서 보고한 이 후¹ 현재 효율 11% 를 달성하였고.² 유연성, 착색성, 투명성 등 독특한 성질을 띠어 현 재 국내외 산업체에서도 큰 관심을 보이고 있다. DSSC는 투명 전극 물질, 염료, 산화물 반도체, 전해질물질로 구성되는데 본 총 설에서는 산화물 반도체 소재물질에 관하여 중점적으로 논의하고 자 하다.

2. DSSC의 작동 원리

그림 1은 양극, 음극 및 전해질로 이루어진 DSSC의 셀 구조를 보 여준다. 양극, 음극 기판은 일반적으로 전도성 투명 유리가 적용되 는데 양극에는 백금 나노입자가 나노코팅되어 있고, 음극에는 다공 성 나노결정 반도체막이 도포된다. 반도체 결정의 크기는 5 nm에 서 수십 nm이고, 반도체막의 두께는 5~20 μm 정도이고 면적 질 량은 1~4 mg/cm²가 일반적이다. 반도체막 표면에는 염료분자가 단분자층으로 화학 흡착되어 음극을 이루고, 양극과 음극 사이에는 I⁻/I₃⁻ 산화-환원 전해질계가 존재하여 DSSC를 형성한다.

DSSC의 작동과정을 간단히 단계별로 살펴보면 다음과 같다.³

2.1 광감응(Photosensitization) 및 전자주입

나노결정 산화물 반도체 표면에 흡착된 염료분자가 태양광(가 시광선)을 흡수하면 전자는 LUMO로 천이하고 이 들뜬 상태의 전 자는 다시 에너지 준위가 낮은 반도체 산화물의 전도띠로 주입된다 (electron injection).

2.2 반도체막 전자확산 및 염료의 재생

주입된 전자는 나노입자간 계면을 통하여 투명 전도성막으로 확 산, 전달되고, 산화된 염료분자는 전해질 I 에 의해 다시 환원되어 중성 분자가 된다(interception 혹은 regeneration). 이때 반도체 막에서 확산되는 전자는 원칙적으로 반도체의 전도띠 에너지 준위 를 유지하지만, 상당 부분의 전자는 반도체막 표면에 존재하는 낮은 에너지 상태(surface state)를 점유하여 낮은 에너지 준위를 띠면 서 호핑 과정을 통해 전도성막에 도달하기도 한다.

한편 표면상태 전자 중 일부는 산화된 염료와 다시 결합하거나 (back-transfer), 전해질의 I₃⁻ 이온을 환원시키기도 한다(recombination). 이와 같은 과정은 dark current를 증가시키면서 반도체 전극막의 성능을 저해하는 주 원인이 된다.

2.3 전해질의 환원

산화된 전해질 I₃-는 확산에 의해 양극 표면에 도달하고 음극에 서 발생한 전자는 외부회로를 통하여 양극으로 이동하여 I₃-를 I-로 다시 환원시켜 DSSC의 작동과정이 완성된다. 양극의 백금 나노입 자는 이 환원 반응의 촉매역할을 한다.

2.4 기전력과 전류량

이러한 일련의 과정에서 최대 기전력(*V*_{*a*}; open circuit voltage) 은 반도체막의 전도띠 에너지 값에 인접한 페르미 에너지 준위(표 면상태에서 전자가 채워진 상태 중 가장 높은 준위)와 전해질의 I⁻/I₃⁻ 산화-환원 전위의 차이로 결정되고 발생되는 전류량은 염

1	신유주 1094	서우미하고 친하고(이하시)
APR 2 1 1 1 1 1	1904	시골네릭교 와릭과(이릭자) 시아마하고 최하고(이하바네)
	1986	시굴내악교 와악과(이악박사), 무기화학
THERE	1992	프랑스 보르도 I 대학 국립과학연구소
- PS		(Ph. D.), 재료화학
	1994	SKM 연구소(선임연구원)
	2004~	한국전자통신연구원 초빙책임연구원
	2005	
	$1995 \sim$	가톨릭대학교 자연과학부 화학과 교수
	현재	

Semiconducting Electrode Materails for Dye-Sensitized Solar Cell

가톨릭대학교 자연과학부 화학과(Yu-Ju Shin, Department Chemistry, Natural Sciences Div., The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon 422-743, Gyeonggi-do, Korea) e-mail : yujushin@catholic.ac.kr

그림 1. DSSC의 구조 및 작동원리. 음극의 반도체 산화물막은 일반적 으로 입경이 20 nm 정도의 결정성이 높은 아나타제-TiO₂로 형성되고 표면적이 큰 다공성막이다.

료의 흡착량과 밀접한 관계가 있음을 알 수 있다.

DSSC에서 반도체 전극막은 핵심부품으로서 몇 가지 중요한 역 할을 수행하게 된다. 먼저 염료분자의 화학흡착을 유도하고 이를 안정적으로 유지해야 한다. 염료분자를 많이 흡착시키기 위해서는 나노 입자를 도입하는 것이 필요하다. 다음으로는 염료의 LUMO 로 천이된 광전자를 받아들이는 받개 역할과 이를 손실 없이 투명 전극막까지 높은 에너지를 갖고 이동시키는 확산 경로를 제공하게 된다. 마지막으로 반도체 전극막 내 존재하는 공극이 서로 잘 연결 되어 전해질의 확산을 용이하게 한다.

3. 입자형 TiO₂ 반도체 전극막

3.1 전극막의 합성과 물리화학적 특성

아나타제-TiO2의 나노입자는 통상 수열반응으로 얻어진다.4 Tialkoxide를 전구체로 이를 초산, 질산 등을 가하여 가수분해하고 이 렇게 얻어지는 솔 용액을 수열반응하면 나노 입자의 콜로이드를 얻 게 된다. 이때 반응 온도는 나노 입자의 크기와 결정성을 결정하는 중요한 변수로 대개 200~230 ℃ 영역에서 조절된다. 이렇게 얻어 진 콜로이드를 10~15 wt% 정도로 농도를 조절하고 여기에 carbowax, hydroxypropyl cellulose 등의 바인더를 혼합하여 페이 스트를 제조한다. 페이스트는 닥터 블레이드 방식으로 투명전극에 도포되고, 이를 400~500 ℃에서 열처리하면 전극막이 완성된다. 최근에는 플라스틱 태양전지를 제조하기 위하여 낮은 온도에서 전 극막을 제조하는 방법도 소개되고 있다. 수열 합성된 TiO2 콜로이 드를 바인더 없이 직접 스핀-코팅하거나⁵ 에탄올 콜로이드를 도포 한 후 압력을 가하는 방법,^{6,7} 메조공극 전극을 제조하거나,⁸ 전자기 파 가열을 응용하거나⁹ 전기영동법을^{10,11} 이용하기도 한다. 바인더 를 사용하지 않는 페이스트도 가능한데, 콜로이드 용액의 flocculation 현상을 이용한 화학적 소결(chemical sintering)을 통한 전 극막 제조법이 제시되기도 하였다.12

첨가되는 전극막의 공극률은 첨가되는 유기물의 양을 조절하면 조 절할 수 있는데, 약 50% 근방에서 가장 좋은 특성을 나타내는 것 으로 알려져 있다.¹³ 컴퓨터 시물레이션 결과에 따르면 이러한 공극 률이 증가하면 한 개의 나노입자가 주위결합하는 입자의 수가 감소 하는데, 50% 근방에서는 평균 4~5개 정도의 입자와 연결되어 있 다. 만일 전자 확산이 표면상태 전자의 확산에 의해 주도된다면, 이 값은 전자 확산에 충분한 연결 통로를 제공하는 것으로 계산되었다. 그림 2는 이상적인 전극막의 표면을 보여준다. 20 nm 크기의 나 노입자들이 서로 연결되어 있고(interconnection) 나노 입자의 결 정성이 높아 전자의 확산이 용이한 형태를 보여준다. 또한 적절한 부피의 공극은 염료의 흡착 및 전해질의 침투를 돕는다.

이렇게 형성된 전극표면에 염료가 안정적으로 흡착되려면 염료 - 전극막의 계면에서 화학결합이 일어나야 한다. 아나타제 TiO₂ 표 면에 존재하는 -OH기와 염료의 유기산기 사이에서 에스테르 반응 이 일어나는데, 아나타제 TiO₂ 염료는 결정면에서 원자의 배열이 염 료의 유기산기의 위치와 적절하게 이루어져 단단한 결합이 이루어 진다(**그림 3**).¹⁵

그림 2. 아나타제-TiO₂ 전극막의 SEM 사진 (a), 아나타제-TiO₂의 결 정구조 (b) 및 열역학적으로 가장 안정한 형태의 결정면 성장 모습 (c).^{3,14}

그림 3. 루테늄 착물 염료(N3)와 아나타제 TiO₂의 배열. 염료의 유기산 기 위치와 TiO₂의 산소 위치가 매우 가깝게 배치된다.

만일 염료-전극막의 계면이 불안정하면 WO₃와 같이 염료의 흡 착이 잘 이루어지지 않거나, ZnO처럼 탈착이 일어나서 태양전지의 성능을 저하시킨다.^{16,17}

염료의 흡착량은 전극의 표면적에 따라 증가한다. 가령 직경이 1 µm의 입자에 비해 10 nm의 입자는 그 표면적이 100배나 증가하 기 때문에 훨씬 많은 염료를 흡착시킬 수 있다. 반면에 입자의 크 기가 작아질수록 표면상태는 증가하기 때문에 적절한 입자의 크기 는 대략 10~30 nm 정도가 되는 것으로 알려져 있다.¹⁸ 일반적으 로 10 µm 두께의 아나타제-TiO₂ 전극막은 대략 1.5×10⁻⁷ mol/ cm² 근방의 흡착량을 보인다.¹⁹

나노입자의 전극막은 빛의 산란이 적어 광 투과율이 높다. 이는 투명한 DSSC를 가능하게 하지만, 입사된 빛을 효율적으로 사용하 지 못함을 의미하기도 한다. 빛의 효율을 높이기 위해서 때로는 나 노 전극막 위에 다시 굵은 입자(200 nm정도)를 이용하여 산란층을 형성시키면 전극막을 통과하는 빛의 경로가 증가하여 전지 성능을 향상시킬 수 있다.²⁰

3.2 전자 전달 특성

3.2.1 띠구조

TiO₂가 뛰어난 전극특성을 보이는 이유는 먼저 전자띠 구조가 염 료의 전자구조와 조화를 이루기 때문이다. DSSC용 반도체 전극물 질은 비교적 큰 띠간격 에너지와 적절한 전도띠 에너지 값을 가져야 한다. 전도띠 에너지가 염료의 LUMO 에너지보다 높다면 염료로부 터 전자가 주입되는 것은 어렵기 때문이다. **그림 4**는 다양한 반도 체 산화물의 전도띠 에너지를 도시한 것이다.²¹ 가장 대표적인 루테 늄 계열의 염료(N3, N719)를 기준으로 보면, 사용 가능한 산화물 은 극히 제한적임을 알 수 있다(빗금친 부분). 만일 SnO₂, WO₃ 등 과 같이 전도띠 에너지가 지나치게 낮으면 전지의 기전력이 떨어지 는 단점이 발생한다. 이러한 측면에서 TiO₂는 전도띠 에너지 값이 염료의 LUMO 보다 약 0.2 V 정도 낮아 이상적인 물질로 알려져 있다.^{21,22}

3.2.2 전자의 주입

DSSC의 반도체 전극막은 빛이 없을 때에는 부도체이지만, 전자

그림 4. 산화물의 이론적 전도띠 에너지(*E_{CB}*) 및 실험적으로 결정한 flat band potential(*E*_{ft}). 빗금친 부분이 DSSC 전극으로 사용 가능한 물질 영 역이다.

가 주입되면 전도도는 증가한다. 전자의 주입은 대개 수십 펨토초 시간상수와 피코초 정도의 시간상수를 갖는 두 과정이 공존하며 이 루어진다.²³⁻²⁶ TiO₂는 수십 펨토초 과정이 주로 일어난다. 빛에 의 해 전자는 루테늄에서 pyridne 고리로 이동한 후(d_{t2g}→π*), 다시 Ti⁴⁺-O²⁻ 결합의 π*(d_{t2g}-O_{2p}) 오비탈로 주입된다(**그림 5**). 관여 되는 두 오비탈이 동일한 대칭성을 갖고 있는 것도 이 주입과정을 용이하게 한다. 이때의 양자효율은 일반적으로 90% 이상이다. Katoh 등은 이러한 전자 주입의 효율이 TiO₂, ZnO, Nb₂O₅, In₂O₃, SnO₂ 등 다양한 반도체에서도 거의 100%에 가까운 값을 보이지 만, 전도띠 에너지가 염료의 LUMO 보다 높은 ZrO₂의 경우는 전 자 주입이 불가능하다는 사실을 밝혀냈다.²⁷

그림 6은 나노결정 티타니아 전극막에 N-719 염료를 흡착시키고 펨토초 레이저로 여기시킨 후 나타나는 transient absorption signal 을 보여준다. 염료의 산화와 전도띠 전자의 형성과정이 20 fs 구간 에서 관측되었는데, 이는 주사 속도 상수가 5×10¹³s⁻¹ 이상의 매 우 큰 값으로 분석되었다.²⁸

이렇게 빠른 전자 전달 과정은 일반 착물 화학종간에 자주 나타

그림 5. 전자의 이동 경로. 전자는 루테늄 금속에서 피리딘의 π^* 궤도를 통해 TiO₂ 층으로 주입된다.³

그림 6. N719가 흡착된 TiO2 전극의 transient absorption signal.

나는 진동 모드가 매개된 전자 커플링(vibration-mediated electronic coupling)으로는 설명할 수 없고, 직접적인 강한 전자 커플 링에 의해서만 가능하고, 또한 전도띠 내부의 받개 역할을 하는 상 태 밀도(density of state)도 중요한 역할을 한다는 것을 의미한 다.²⁴⁻²⁶ 한편 염료가 TiO₂ 표면에 이상적으로 흡착되지 않은 경우 에는 이보다 늦은 피코초 시간대로 전자 주입이 일어나는 것이 관 측된다.²⁸

3.2.3 전자의 확산

나노결정 아나타제 TiO2 전극막에 주입된 전자는 확산에 의해 투명 전도막으로 이동한다. 전해질이 존재할 때 전자의 확산계수 는 조사되는 광량에 따라 10⁻⁸-10⁻⁴ cm²s⁻¹의 값을 갖는다.²⁹⁻³³ 이는 단결정 아나타제 TiO₂(0.5 cm²s⁻¹)에³⁴ 비해서 훨씬 작은 값 으로 전극막에서의 확산은 단순한 전도띠를 따라 일어나는 것만이 아니라 표면상태와 전도띠 준위간을 반복 이동하면서(trappingdetrapping) 진행되는 부분이 상당하다는 것을 시사한다.³⁵⁻³⁷ 이 과 정의 활성화 에너지는 0.10~0.30 eV로 빛의 세기에 따라 변하는 것으로 알려져 있다.³⁸ 두께 10 μm의 아나타제 TiO₂ 전극막에서 전자확산은 빛의 세기가 one sun 조건일 때, 1~2 ms 정도의 비 교적 긴 확산시간을 보이는데, 빛의 세기가 감소하면 확산시간은 길어진다.³⁹ 확산시간은 DSSC의 성능에 매우 중요한 인자이다. TiO₂ 표면상태에 존재하는 전자와 전해질과의 recombination이 일어나는 평균시간, 즉 전자의 life time에 비해 훨씬 짧아야 전지 가 정상적으로 작동할 수 있기 때문이다. 전자의 life time은 빛의 세기, 전극막의 두께, 입자의 크기, 전해질의 종류 등에 따라 달라지 지만, 아나타제 TiO2 전극막의 경우 수십 밀리초에서 수초 정도로 보고되고 있다.⁴⁰

반도체 전극막의 전하 전달 특성을 좌우하는 표면상태의 발생원 인은 분명하지 않지만, TiO₂ 표면의 비정질상, 표면결함, 산소결손, 화학적 환경과 밀접한 관련이 있다.⁴¹ 이러한 모든 것들은 결정성을 감소시켜 전도띠의 edge 부분에 위치한 상태들을 편재화시키게 된 다. 따라서 나노 입자를 이용하여 제조된 전극막에는 필연적으로 표면상태가 발생하게 된다. Yanagida 등은 열처리 온도가 증가하면 전자의 life time이 증가하는 것을 발견하였는데, 이는 나노 입자의 결정성이 증가하여 표면상태의 농도가 감소하였고, 입자-입자간 의 연결이 강화된 것으로 설명하였다.⁴² 또한 큰 입자의 경우는 이 러한 열처리 온도에 대한 의존성이 적다는 것을 관측하였는데, 이 역시 입자의 크기에 따라 결정성이 증가한다는 것을 고려하면 앞 의 결과와 잘 일치한다고 할 수 있다.

3.3 TiO2 전극막의 설계

전극막의 물리화학적 특성 및 전자 전달 특성을 고려하면 많은 변수들이 서로 상호관계를 맺고 있음을 알 수 있다. 따라서 최적의 전극막을 설계하기 위해서는 적절한 변수 간 조화가 필요하다. 몇 가지 고려해야 할 사항을 나누어 정리하면 다음과 같다.

3.3.1 입자

입자의 크기를 작게 하면, 표면적이 증가하여 염료의 흡착량은 증 가하지만, 표면상태의 증가로 인해 전자 확산이 어려워지고, 공극의 크기가 작아져서 전해질의 확산 역시 늦어지는 단점이 발생한다. 만 일 나노 입자의 결정성을 향상시킬 수 있다면, 최적화된 입자의 크 기는 좀 더 작아질 수 있을 것이다.

입자의 형태도 중요한 변수인데, TiO2의 다른 동소체인 루타일

은 전도띠 에너지는 아나타제형에 비해 0.2 V 낮고 침상의 결정상 을 갖고 있다.⁴³ 결정성은 대개 아나타제보다 높지만, 전극막의 표 면적이 감소하고, 입자간 연결이 약화되어 아나타제 전극보다 전지 특성이 떨어지는 것이 보고되었다.^{44,45}

3.3.2 공극

앞서 언급한 이상적인 공극률(50%)은 I⁻/I₃⁻ 액체 전해질을 기 준으로 연구된 것으로 전해질계가 변경되면 그 전해질의 확산속도 를 고려하여 설계해야 한다. 또한 단순한 공극율 뿐만 아니라, 공극 의 크기 역시 중요한 변수가 될 수 있다. 공극의 크기가 작으면 큰 공극율을 갖더라도 전해질의 확산에 장애가 되기 때문이다.

3.3.3 전극막 두께

두께가 증가하면 표면적의 증가로 염료량이 증가하지만, 전자확 산 시간도 증가하여 전자의 life time과 경쟁이 일어나므로 전자 전달 특성이 나빠진다. 또한 빛의 투과율이 감소하여 광전자의 농 도가 염료량에 비례하여 증가하지 못한다. 따라서 최적의 전극막 두께는 입자가 클수록 증가한다.⁴²

3.4 나노구조 TiO2 전극막

TiO₂ 전극막 표면을 다른 금속 산화물로 처리하여 광전 특성을 향상시키려는 노력도 시도되었다. 전극의 나노 코팅에는 두 가지 방 법이 있는데 전극을 제조하고 여기에 코팅하는 방법(전극막 코팅) 과 전극입자를 먼저 코팅하고 이를 이용하여 전극막을 제조하는 것 (전극입자 코팅)이다(**그림 7**).

입자 코팅의 경우는 먼저 전극입자 콜로이드에 코팅물질을 첨가 하여 표면흡착을 유도한 후 페이스트를 만들어 전극막을 제조하는 것이다. 전극막 코팅은 전극막을 metal alkoxide 등의 코팅액을 이용하여 딥코팅한 후 다시 열처리하여 얻어진다. 전극막 코팅은 전 극막의 두께가 증가하면 전극막 표면전체를 균일하게 처리하는 것 이 어려워지는 단점이 있으나, 전극 내 입자 간 연결은 잘 형성된 상 태이므로 전자 확산에는 큰 손상이 없는 장점도 있다. 반면에 전극 입자 코팅은 균일하게 할 수 있지만, 입자—입자 간 계면에 이물질 이 존재하여 입자간 연결이 약화되는 단점이 생긴다.

Nb₂O₅와 같이 전도띠 에너지가 높은 반도체 물질로 표면을 처리 하면 TiO₂-전해질 간 계면에 에너지 장벽이 형성되어 recombination을 줄여 모든 광전특성이 향상되었고 약 37%의 효율 증가를 나타내었다.⁴⁶ ZnO는 전도띠 에너지가 TiO₂와 동일한데, 효율이 27% 증가한 것으로 보고되었다.⁴⁷ 이는 ZnO로 인하여 TiO₂의 전 도띠에 전자밀도가 증대된 것에 기인한다. 이와는 반대로 전도띠 에

그림 7. 전자가 염료로부터 주입된 후 입자간 연결통로를 통해 확산되는 전극막 코팅(a)과 입자-입자간 계면을 통과하면서 확산되는 전극입자 코팅(b).

너지가 낮은 SnO₂ 코팅의 경우는 효율은 크게 감소하는데, 이는 표 면상태 준위가 더 낮아져 recombination이 많이 일어나기 때문으 로 설명할 수 있다. MgO, Y₂O₃, ZrO₂, Al₂O₃ 등의 절연물질은 연구 자에 따라 약간의 차이는 있지만, V_α의 소폭 증가와 J_{sc}(shortcircuit current density)의 대폭적인 감소로 효율은 감소하는 것으 로 나타났다.⁴⁸ 전자의 recombination은 투명 전극 FTO, ITO를 통해서도 가능하기 때문에 투명 전극에 얇은 blocking 층을 도포한 후 TiO₂ 전극을 제작하면 전지 특성을 향상시킬 수 있다. 이는 TiO₂ 반도체층과 투명 전극의 전기적인 접촉을 개선하는 역할도 한다.

나노선-TiO₂의 합성도 역시 흥미로운 분야이다. 나노선은 그 자 체가 단결정이므로 전자확산에 유리한 형태이기 때문이다. 솔-젤 법과 전기영동을 적용하면 50~200 nm 사이에서 두께를 조절한 나노선을 10 μm 이상의 길이로 배향, 합성이 가능하다.^{49,50} Tian은 TiO₂ 나노입자를 Ti-포일에 도포하고 이를 NaOH로 처리한 후 수 열반응을 거쳐 배향된 직경 12 nm인 나노튜브를 얻었으며 이들은 기판에서 분리되었다.⁵¹ Electrospinning을 이용한 나노튜브, 계면 활성제를 이용한 나노막대 등도 보고된 바 있다.^{52,53} 그러나 이러 한 나노선, 막대, 나노튜브 TiO₂를 적용한 전극막은 입자 전극막에 비해 낮은 광전 특성을 보이는데, 이는 낮은 표면적이 주된 원인으 로 생각된다.

메조 공극-TiO2 전극막에 대한 연구도 활발히 진행되고 있다.

그림 8. 메조 공국-TiO₂ 전극막(a)과⁵⁴ 고결정성 TiO₂ 나노막대 전극막 (b)의⁵⁵ I-V 거동. 메조공극 전극막은 1 μm 두께로 (1) 입자 전극막(2,3) 에 비교 전류량이 크게 증가하였다. 삽입된 그림은 메조공극막의 SEM, 나노막대 3차원 network 전극의 TEM 사진이다.

이들은 전극막 전체에 걸쳐 TiO₂ network이 형성되어 전자 확산에 유리한 것으로 생각되는데, 동일 두께에서 전류량이 크게 늘고 일 반 입자 전극막에 비해 50% 정도 효율이 증가한다.⁵⁴ 현재로는 얇 은 막(<1 μm) 만이 보고되었는데, 앞으로 두께를 증가시키면 유망 한 형태의 전극막이 될 것으로 기대된다. Adachi는 메조 공국-TiO₂ 전극막과 유사한, 5~12 nm의 나노선이 3차원적으로 연결된 나노 구조 TiO₂ 전극을 6 μm 두께까지 합성하는데 성공하였다(**그림** 8).⁵⁵ 고결정성 TiO₂는 결정면 {101}이 잘 발달한 상태로 루테 늄 염료의 흡착량이 동일 두께의 입자전극 막에 비해 4배가 가능 하고 이에 따라 9.3%의 높은 효율을 달성하였다. 이는 주로 높은 J_{sc} 값(19.22 mA/cm²)에 기인하는 것이다.

4. ZnO 전극

TiO₂의 나노입자는 수열반응으로만 합성이 가능하지만, ZnO는 Zn-acetate 등에 염기를 가하여 분해함으로써 쉽게 합성이 가능 하며 이외에 전기분해 방법 등을 통해 입자의 크기를 조절할 수 있 는 다양한 합성법이 알려져 있다.⁵⁶ 일반적인 염기 분해 반응을 통 해 합성된 ZnO는 4~6 nm로 입자가 작지만, 이를 투명 전극에 도 포 후 열처리를 하면 20 nm로 성장한 전극막을 얻는다(**그림 9**).⁵⁷

ZnO는 wurtzite 구조를 띠는데, ZnO₄ 정사면체가 꼭지점 공유를 통해 층을 이루고 다시 c축 방향으로 이들이 쌓여서 hexagonal 결정구조를 이룬다. ZnO는 전도띠가 Zn_{\$PA}-O₂A간 상호작용으로 이 루어지기 때문에 전도띠가 TiO₂ 보다 넓은(wide band) 특성을 보 여주지만, 전도띠 에너지 값은 TiO₂와 거의 동일하기 때문에 전극 막으로서 높은 특성이 기대되었다. 그러나, Redmond는 15 nm 입 자로 구성된 1 µm 두께의 ZnO 전극을 이용하여 제작한 DSSC에 서 에너지 변환 효율이 TiO₂ 보다 훨씬 작은 0.4% 값을 얻었다.⁵⁸ 이와 같이 낮은 광전 특성은 다른 연구자들에 의해서도 보고되었 는데 그 원인은 ZnO-염료 간 계면의 불안정성, 높은 표면상태 등으 로 알려졌다.⁵⁹⁻⁶² Hagfeldt는 ZnO 나노 입자의 표면 일부가 약산 성의 염료분자에 의해 분해되는 것을 UV, IR 분광학 연구를 통하 여 밝혀내었다.⁶⁰ 이렇게 용출된 Zn²⁺ 이온은 염료분자와 뭉치를 이루어 나노공극을 막아버리는데 이로 인해 정상적으로 흡착된 염

그림 9. 염기 분해 반응으로 얻어진 ZnO 입자 (a)와 이를 450 ℃로 열 처리한 전극막 표면 (b)의 SEM 사진.

료의 감광 효율도 떨어지고, 또한 전해질의 확산을 방해하여 전지 특성이 떨어진다.

ZnO는 정사면체 단위체로 이루어져 결정 표면에서 Zn-O 결합 의 결손이 생길 경우 정팔면체 배위결합을 하는 TiO₂에 비해 전자 상태의 변화가 클 수 밖에 없다. 이로 인해 발생하는 표면상태의 농 도도 높고, 또한 그 에너지도 전도띠에 비해 상당히 낮은 deeptrap의 경우가 많을 것으로 보인다. 전도띠를 통한 전자확산은 넓 은 띠의 특성으로 인해 전자간 상호작용이 작기 때문에 TiO₂에 비 해 유리한 점도 있다. 하지만 표면상태간 호핑, trapping-detrapping 등, 표면상태를 포함하는 전자확산은 상당히 늦을 것으로 생각된다.

염료-ZnO 계면에서 전자 주입 속도는 염료의 흡착상태에 따라 달라지는 것으로 알려졌는데, 일반적으로는 TiO₂ 보다 속도가 늦 고, 특히 피코초 시간상수를 갖는 과정이 주로 일어나는 것으로 알 려져 있다.⁶² 전자 주입과정에는 frontier 궤도 간 대칭성도 중요한 데, TiO₂는 염료와 반도체의 주개-반개가 동일한 대칭 궤도로 형성 되는 반면($\pi * - \pi *$), ZnO에서는 대칭성이 떨어지기 때문이다($\pi * - \sigma *$) Zn-염료의 뭉치로 인한 전해질의 확산이 나빠지는 것은 I-V 거동에서도 나타난다. 주어진 바이어스 전압에서 측정 시간을 변화 시킬 때, 빠른 측정시간에서는 불안정한 거동을 보이는 것이 관측 되었다.⁶³

ZnO의 전극막 특성을 높이기 위해서는 염료-ZnO 계면상태를 개선하는 것이 중요하다. 자기조립 염료-전극을 이용하여 흡착특 성을 높이는 방법도 시도되었고⁶⁴ ZnO 입자를 크게 하여 결정성 을 증가시키는 것도 효과적인데, 150 nm ZnO 입자를 사용한 전극 막은 0.1 sun 조건에서 5.0%의 높은 효율을 보여주었다.⁶⁰

ZnO 전극표면의 나노코팅 실험은 잘 알려져 있지 않지만. 이는 ZnO 표면의 산에 대한 안정성을 높이는 방법에 효과적일 것이다. ZnO의 경우는 입자가 전극막 제조를 위한 열처리 시 입자도 성장 하는 과정이 포함되므로 입자코팅의 경우 전극막의 입자성장이 제 한되는 것도 고려해야 할 부분이다. 예전에 Tennakone이 ZnO-SnO₂ 입자간 혼합계 전극을 보고한 바 있지만,⁶⁵ 이것은 ZnO 전 극의 표면 처리라기 보다는 두 물질이 혼합된 전극이라고 할 수 있 다. 최근에 얇은 ZnO 전극막(1 μm)에 소량의 TiO₂(1 wt%)를 코 팅하면 효율이 증가하는 것이 관측되었다.⁵⁷ 코팅 후 전극 입자의 크기는 오히려 줄어들었는데, 이는 비정질상의 성긴 ZnO 표면에 Ti⁴⁺ 이온이 흡착되면서 표면구조가 강화되어, 보다 밀도가 높은 표면구조를 갖게 된 것으로 생각된다. 표면구조의 강화는 ZnO의 용해를 막을 수 있는데 실제로 전극막 코팅 후 염료의 흡착량은 오 히려 줄어들어 ZnO 전극막 내부에 Zn-염료 뭉치가 형성되지 않 았음을 시사하고 있다.

전극입자에 광전특성이 없는 SiO₂를 처리하면, 전극막 특성이 크 게 증가하는데, Si/Zn 비가 20%인 13.7 μm 두께의 전극막의 경우 5.2%에 달하는 에너지 변환 효율을 달성하였다(**그림 10**).⁶⁶

여기에서도 염료의 흡착량은 크게 감소하였고, I-V 거동 역시 측 정 시간에 무관하게 안정한 거동을 보여 전해질의 적절한 확산이 이 루어짐을 알 수 있었다. 이렇게 표면처리된 전극막은 산에 대한 안 정성도 증가되어 ZnO 표면이 안정화되었을 것으로 판단되었다.

전극입자 코팅은 ZnO 입자의 결정성장을 제한하여 450 ℃로 처리 후에도 입자의 크기는 5 nm로 유지되었다(**그림 10**). 그럼에

그림 10. SiO₂@ZnO core-shell 나노입자를 적용한 전극의 I-V 거동과 전극표면의 SEM 사진. ZnO 입자는 성장이 차단되어 5 nm 크기로 머 물러있다.

도 불구하고 높은 효율을 나타내는 것은 SiO₂ 코팅이 결정표면에 존재하는 표면상태를 제거하는 데에도 효과가 있음을 보여준다.

다양한 나노구조 ZnO 전극의 합성이 보고되고 있다. 최근 버클 리의 Yang 그룹은 배향된 ZnO 나노선 전극을 이용한 DSSC를 발 표하였다.⁶⁷ 그들은 씨앗층을 10~15 nm 두께로 투명전극막에 도 포한 후 수용액에서 결정성장법으로 선밀도 3×10¹⁰/cm², 길이는 최대 25 μm에 달하는 배향 나노선 전극을 제작하였다(**그림 11**).

이를 적용한 태양전지는 면적이 0.2 cm²일때 효율 1.51%, J_{sc} =5.85 mA/cm², V_{oc}=0.71 V, FF=0.38을 나타내었다. ZnO 나 노선 전극은 기존의 입자전극에 비해 훨씬 향상된 전자전달과정이 가능하다. 먼저 전자의 주입속도가 향상되었고, 이때 ZnO 나노선 결정내 전자의 확산계수는 0.05~0.5 cm²/s로 ZnO, TiO₂ 입자전 극에 비해 수백배에 달하는 큰 값을 보인다. 나노선은 각각 단결정 으로 표면의 결정성이 높아 표면상태도 크게 줄어들 것으로 생각된 다. 따라서 전자의 확산 과정에서도 전도띠 확산이 더 중요한 기여 를 하면서 입자전극보다 훨씬 뛰어난 특성을 보인다. 전자의 확산 속도가 최적의 전극막 두께를 결정하는 중요한 요인이라는 것을 고 려하면, 나노선이 적용된 전극막의 최적두께는 기존 입자 전극막보 다 상당히 증가할 것으로 생각된다. 반면에 나노선 전극막은 표면 적이 입자전극에 비해 줄어드는 단점이 있어 획기적인 효율증가를 위해서는 반드시 극복해야 할 문제를 안고 있다. 나노선 전극의 공 극은 부피도 클 뿐 아니라 직선형으로 잘 발달해 있어 전해질의 확 산이 매우 용이하여 확산계수가 작은 폴리머 전해질을 적용하는 고 체상태 전지의 제작에 유리할 것으로 생각된다. 하지만 나노선 전 극막은 표면적이 입자전극에 비해 줄어드는 단점이 있어 이를 보완 하는 것도 필요하다.

메조 공극형 ZnO 나노구조물 전극에 대한 연구도 매우 인상적이

그림 11. 배향선 ZnO 나노선 전극을 적용한 DSSC개념도 (a)와 배양된 나노선의 길이와 두께의 관계 (b). 삽입된 SEM 사진의 scale bar는 5 μm 에 해당된다.

다. 투명전극 표면에 layered hydroxy zinc acetate를 두껍게 도 포하여 이를 열처리하면 탈수 반응을 거쳐 다공성 ZnO 나노구조물 을 얻게 된다(**그림 12**).⁶⁸

전극막은 열분해 후에도 종전의 층상구조를 유지하면서 매우 큰 공극을 갖게 된다. 또한 20~50 nm 정도의 ZnO 입자들간의 연결 상태가 크게 개선된 모습을 보인다. 그 결과, 효율 4.1%, J_{sc}=12.6 mA/cm², V_{oc}=0.67 V, FF=0.41의 높은 광전특성을 나타내었다. 그러나 염료 흡착량이 1.4×10⁻⁷ mol/cm²로 10 μm TiO₂ 전극막 (효율 10%)과 거의 비슷하다는 것을 고려하면, ZnO 입자의 표면 상태와 Zn-염료간의 뭉치 형성은 여전히 개선이 필요하다고 생각 된다. 이와 유사한 방법으로 layered hydroxy zinc carbonate LHZC)를 적용한 경우도 같은 연구진에서 보고되었는데 투명전극 표면에 수직으로 발달한 전극층이 형성되고, 효율 3.9%으로 유사 한 결과를 보였다.⁶⁹

5. SnO2 전극

SnO₂는 rutile 구조를 가지며 전도띠 에너지는 TiO₂에 비해 0.4 V 정도, 루테늄 착물 염료의 LUMO에 비해 0.6 V 낮다.⁷⁰ 이에 따 라서 SnO₂-태양전지의 기전력은 TiO₂, ZnO 소자보다 상당히 낮 으며. 따라서 SnO₂ 전극막으로 주입된 전자는 전해질과의 recombination이 더 쉽게 일어난다. 이러한 이유로 SnO₂ 태양전지는 일 반적으로 낮은 에너지 변환 효율을 나타낸다.

SnO2 나노입자는 주로 염화염, 질산염 등의 단순염에 암모니아,

그림 12. LHZA 전구체를 이용한 다공성 ZnO의 전극막 구조와 이를 적 용한 태양전지의 I−V 거동.

그림 13. 물/에틸렌글리콜 비율이 0.01, 0.04 및 0.5로 변할 때 SnO₂ 입 자의 SEM 사진 (A-C)과 pH에 따른 입자크기의 변화.

요소 등 염기를 가하여 가수분해 반응을 통해서 합성된다. 이렇게 합성된 SnO₂는 결정성이 매우 떨어지고 입자도 2~6 nm로 작아 이를 다시 수열반응을 통해 개선하여 사용한다.^{71,72} SnCl₂·2H₂O 을 물이 섞여있는 에틸렌글리콜 용매에 녹인 후 pH를 조절하면서 가열하여 합성하는 방법도 최근에 발표되었는데, 물의 함량과 pH 조건에 따라 입자 크기가 조절된다는 점에서 주목된다(**그림 13**).⁷³

그림 14. Zn/Sn 비에 따른 ZnO@SnO2 DSSC의 I-V 거동.75

SnO2 DSSC는 앞서 설명한 바와 같이 Voc=0.3~0.45 V, Jsc= 3~6 mA/cm², FF=40% 내외의 값을 띠면서 효율은 대개 1% 이하의 값을 보이는 것이 일반적이다. 입자의 크기를 4 nm에서 18 nm로 증가시키면 효율은 약 2배 가량 상승한다. 이는 결정성이 증 가하여 recombination이 감소하고 이에 따라 광전류량이 증가하는 것이 주 원인으로 밝혀졌다.⁷¹ 나노 코팅은 SnO₂ 전극의 광전 특성 을 높이는데 효과적이다. MgO, T₂O₃(T=Al, Y, Sc, Ga, La, Sm, Nd), ZrO2 등 절연체를 코팅하면 SnO2에서 전해질로 전자가 이동하는 것을 막아주는 역할을 한다. 그 결과 Va는 0.1~0.2 V가 증가하고, J...는 최대 100%까지 증가하고 효율은 3~5%로 크게 증가한다.48 이때의 코팅두께는 수 Å 정도로 염료로부터 SnO2 전극막으로 주 사되는 것은 tunneling이 가능하여 큰 장애가 없는 것으로 보인다. ZnO 코팅의 경우는 Zn/Sn 값이 0~0.5 구간에서는 효율이 계속 증가하는데, Zn/Sn 비가 낮을 때에는 Voo, Jsc가 모두 증가하지만 높은 영역에서는 Jsc는 감소하고 Vac가 증가하는 모습을 보인다(그 **림 14**).^{74,75} TiO₂ 코팅은 V_{or}, J_o가 모두 큰 폭으로 증가한다.⁷⁶

6. 기타 산화물 전극

SrTiO₃는 페로브스카이트 구조를 갖는 물질이다. TiO₆ 정팔면체 가 꼭지점 공유를 통해 3차원으로 배열되고, 그 사이 12배위자리 에 Sr²⁺ 이온이 자리하여 구조를 이룬다. SrTiO₃는 전도띠 에너지 가 아나타제-TiO₂에 비해 0.2 V 높아 루테늄 염료의 LUMO와 같 은 에너지 준위를 갖는다.⁴³ 나노입자의 합성은 Sr(OH)₂와 TiO₂ 나 노결정을 혼합하여 수열반응을 통해서 이루어진다.^{43,77}

SrTiO₃-DSSC는 유사한 조건에서 제작된 TiO₂-DSSC와 비교 하여 V_a는 약 0.1 V의 증가를 보였으나 J_a는 1/4로 감소하여 효 율은 TiO₂ 대비 약 1/3 수준으로(1.8%) 감소하는 광전특성을 보인 다. 이는 염료 흡착량이 작고 염료-전극막의 상호작용이 TiO₂에 비 해 좋지 않은 것에 기인한다.⁷⁸

Nb₂O₅는 정팔면체가 꼭지점, 모서리 공유를 하면서 3차원적 구 조를 띠며 전도띠 에너지는 TiO₂에 비해 0.1 V 높다. 합성은 NbCl₅ 나 Nb-alkoxide에 산을 가하여 Nb(OH)₅를 만든 후 이를 열처리 하거나,⁷⁹ Nb-alkoxide 에탄올 용액에 pentanedione등의 킬레이 팅 시약을 가한 후 수열반응을 통해서 이루어진다.⁸⁰ 솔-젤법으로 기판위에 직접 막을 형성하는 것도 가능하다.⁸¹ 광전특성은 SrTiO₃ 와 비슷하여 V_a는 TiO₂에 비해 증가하고, J_a는 감소한다.⁷⁹ Nb₂O₅ 는 TiO₂와 염료 흡착량은 비슷하지만, 전극막의 두께를 증가시켜 도 광전특성은 거의 변하지 않는데, 이는 표면상태 문제가 상당히 심 각하다는 것을 시사하는 것이다. 이로 인해 광전류량이 광량에 비례 하지 못하고 dark current가 증가하는 문제가 있다. Nb₂O₅ 전극막 표면을 Nb-alkoxide로 처리한 후 가열하여 Nb₂O₅-나노코팅을 하 면 전극막 표면적이 증가하여 염료흡착량이 커지고, 입자간 연결상 태를 개선하여 광전류가 크게 증가하고 dark current는 감소하여 전극막 특성이 크게 개선된다.

이외에도 WO₃, In₂O₃, Ta₂O₅ 등의 광전특성이 연구되고 있으나, 현재로는 효율이 매우 낮아 실용화에는 어려움이 많은 것으로 보인 다.⁷⁹

7. 결론

최근 화석 연료의 고갈, 그리고 불안정한 세계정세로 인해 새로운 에너지원을 찾으려는 노력이 기울여지고 있다. 염료감응 태양전지 는 이러한 청정, 신재생 에너지의 새로운 형태로 많은 연구 관계자 들의 깊은 관심을 받고 있다. 현재의 염료감응 태양전지는 셀 효율 11%을 달성했지만, 이 결과는 지난 10여 년간 집중적으로 연구해 온 입자형 아나타제-TiO₂ 전국을 최적화하여 얻은 것을 생각할 때, 향 후 반도체 전국막에 대한 연구는 기존의 개념을 넘는 창의력이 필요한 분야일 것이다. 기존 광전 물질에 대한 이해를 넓히는 동시 에 새로운 나노 구조물, 새로운 물질에 대한 탐구도 병행되어야 하 는 분야가 나노 반도체 전극막이라고 생각된다.

참고문헌

- 1. B. O'Regan and M. Grätzel, Nature, 335, 737 (1991).
- 2. (a) M. Grätzel, J. Photochem. Photobio. A., 164, 3. (2004);
 (b) M. Grätzel, Inorg. Chem., 44, 6841 (2005).
- 3. M. Grätzel, J. Photochem. Photobiol. C. Reviews, 4, 145 (2003).
- C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, *J. Am. Ceram. Soc.*, 80, 3157 (1997).
- F. Pichot, J. R. Pitts, and B. A. Gregg, *Langmuir*, 16, 5626 (2000).
- H. Lindström, A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, and A. Hagfeldt, *Nano. Lett.*, 1, 97 (2001).
- G. Boschloo, H. Lindström, E. Magnusson, A. Holmberg, and A. Hagfeldt, J. Photochem. Photobiol. A., 148, 11 (2002).
- D. Zhang, T. Yoshida, and H. Minoura, *Adv. Mater.*, **15**, 814 (2003).
- S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, J. Photochem. Photobio. A., 164, 93 (2004).
- T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, J. Photochem. Photobio. A., 164, 187 (2004).
- T. Miyasaka and Y. Kijitori, J. Electrochem. Soc., 151, A1767 (2004).

- N.-G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y.-J. Shin, *Adv. Mater.*, **17**, 2349 (2005).
- J. V, de Lagemaat, K. D. Benkstein, and A. J. Frank, J. Phys. Chem. B., 105, 12433 (2001).
- 14. U. Diebold, Surf. Sci. Rep., 48, 53 (2003).
- Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry–Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.–H. Fischer, and M. Gratzel, *Inorg. Chem.*, 38, 6298 (1999).
- 16. K. H. Hauffe, Photogr. Sci. Eng., 20, 124 (1976).
- K. Keis, J. Lindgren, S. E. Lindquist, and A. Hagfeldt, Langmuir, 16 4688 (2000).
- S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, *J. Phys. Chem. B.*, **107**, 8607 (2003).
- M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry– Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, J. Am. Chem. Soc., 115, 6382 (1993).
- S. Nishimura, N. Abrams, B. Lewis, L. I. Halaoui, Th. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, *J. Am. Chem. Soc.*, **125**, 6306 (2003); L. I. Halaoui, N. M. Abrams, and T. E. Mallouk, *J. Phys. Chem.*, **109**, 6334 (2005); S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, and R. Kern, *Chem. Commun.*, **15**, 2011 (2005).
- 21. N. -G. Park, J. Korean Ind. Eng. Chem., 15, 265 (2004).
- 22. Michael Grätzel, Nature, 414, 338 (2001).
- Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, *J. Phys. Chem.*, 100, 20056 (1996).
- 24. J. E. Moser and M. Grätzel, Chimia, 52, 160 (1998).
- (a) G. Benkö, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev, and V. Sundström, *J. Am. Chem. Soc.*, **124**, 489 (2002).
 (b) J. Kallioinen, G. Benkö, V. Sundström, J. E. I. Korppi-Tommola, and A. P. Yartsev, *J. Phys. Chem. B.*, **106**, 4396 (2002).
 (c) G. Benkö, J. Kallioinen, P. Myllyperkiö, F. Trif, J. E. I. Korppi-Tommola, A. P. Yartsev, and V. Sundström, *J. Phys. Chem. B.*, **108**, 2862 (2004).
- K. Schwarzburg, R. Ernstorfer, S. Felber, and F. Willig, *Coord. Chem. Rev.*, 248, 1259 (2004).
- R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujuhashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, *J. Phys. Chem. B.*, **108**, 4818 (2004).
- B. Wenger, M. Grätzel, and J. E. Moser, J. Am. Chem. Soc., 127, 12150 (2005).
- 29. N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, and A. J. Frank, *J. Phys. Chem. B.*, **104**, 3930 (2000).
- A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, *J. Phys. Chem. B.*, 104, 949 (2000).
- B. van der Zanden and A. Goossens, J. Phys. Chem. B., 104, 7171 (2000).
- 32. S. Nakade, W. Kubo, Y. Saito, T. Kanzaki, T. Kitamura, Y. Wada, and S. Yanagida, *J. Phys. Chem. B.*, **107**, 14244 (2003).
- H. Greijer-Agrell, G. Boschloo, and A. Hagfeldt, J. Phys. Chem. B., 108, 12388 (2004).
- L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, and F. Le'vy, *J. Appl. Phys.*, 75, 633 (1994).
- 35. J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B., 104,

4292 (2000).

- 36. N. Kopidakis, E. A. Schiff, N.-G. Park, J. van de Lagemaat, A. J. Frank, *J. Phys. Chem. B.*, **104**, 3930 (2000).
- A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, K. G. U. Wijayantha, *J. Phys. Chem. B.*, **104**, 949 (2000).
- G. Boschloo, and A. Hagfeldt, J. Phys. Chem. B., 109, 12093 (2005).
- A. C. Fisher, L. M. Peter, E. A. Ponomarev, and I. Uhlendorf, *J. Phys. Chem. B.*, **104**, 949 (2000).
- J. Nelson, S. A. Haque, R. D. Klug, and J. R. Durrant, *Phys. Rev. B.*, 63, 205321 (2001).
- 41. H. Wang, J. He, G. Boschloo, H. Lingdstrom, A. Hagfeldt, and S.-E. Lindquist . J. Phys. Chem. B., 105, 2529 (2001).
- S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, *J. Phys. Chem. B.*, **106**, 10004 (2002).
- 44. N.-G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B., 104, 8989 (2000).
- 45. G. Schlichthörl, S. Y. Huang, J. Sprague, and A. J. Frank, *J. Phys. Chem. B.*, **101**, 8141 (1997).
- S. G. Chen, S. Chapple, Y. Diamant, and A. Zaban, *Chem. Mater.*, 13, 4629 (2001).
- 47. Z.-S. Wang, C.-H. Huang, Y.-Y. Huang, Y.-J. Hou, P.-H. Xie, B.-W. Zhang, and H.-M. Cheng, *Chem. Mater.*, 13, 678 (2001).
- 48. A. Kay and M. Grätzel, Chem. Mater., 14, 2930 (2002).
- 49. S. J. Limmer and G. Cao, Adv. Mater., 15, 427 (2003).
- Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, *Nano Lett.*, 2, 717 (2002).
- 51. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and H. Xu, J. *Amer. Chem. Soc.*, **125**, 12384 (2003).
- 52. D. Li and Y. Xia, Nano Lett., 3, 555 (2003).
- 53. P. Davide Cozzoli, Andreas Kornowski, and Horst Weller, *J. Amer. Chem. Soc.*, **125**, 14539 (2003).
- M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Grätzel, *Nano Lett.*, 5, 1789 (2005).
- M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, J. Am. Chem. Soc., 126,14944 (2004).
- 56. L. Spanhel and M. Anderson, J. Am. Chem. Soc., 113, 2826 (1991); E. A. Meulenkamp, J. Phys. Chem. B., 102, 2826 (1998); M. Costa, and J. L. Bapista, J. Eur. Ceram. Soc., 11, 275 (1993).
- 57. Y. J. Shin, K. S. Kim, N.-G. Park, K. S. Ryu, and S. H. Chang, *Bull. Korean Chem. Soc.*, 26, 1929 (2005).
- G. Redmond, D. Fitzmaurize, and M. Grätzel, *Chem. Mater.*, 6, 686 (1994).
- I. Bedja, P. V. Kama, X. Hua, P. G. Lappin, and S. Hotchanda ni, *Langmuir*, **13**, 2398 (1997).
- 60. K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westerma rk, H. Rensmo, and H. Siegbahn, J. Photochem. Photobiol. A., 148, 57 (2002).
- 61. H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H.

Arakawa, and M Tachiya, J. Phys. Chem. B., 107, 2570 (2003).

- N. A. Anderson, X. Ai, and T. Lian, J. Phys. Chem. B., 107, 14414 (2003).
- 63. unpublished data.
- T. Yoshida, M. Iwaya, H. Ando, T. Oekermann, K. N. Derck Schlettwein, D. Wöhrle, and H. Minoura, *Chem. Commun.*, 400 (2004).
- K. Tennakone, G. R. R. A. Kumara, I.R.M. Kottegoda, and V. P. S. Perera, *Chem. Commun.*, **15**, 15 (1999).
- 66. Y. J. Shin, 2005 MRS Fall meeting, Boston, Nov., 2005.
- M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, *Nature materials*, 455 (2005).
- K. Kakiuchi, E. Hosono, and S. Fujihara, J. Photochem. Photobiol. A., 179, 81 (2006).
- E. Hosono, S. Fujihara, I. Honma, and Haoshen Zhou, *Adv. Mater.*, **17**, 2091 (2005).
- 70. A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, and J. R. Durrant, *J. Phys. Chem. B.*, **109**, 12525 (2005).
- 71. S. Chappel and A. Zaban, Sol. Energ. Mat. Sol. C., 71, 141 (2002).
- 72. N. S. Baik, G. Sakal, N. Miura, and N. Yamazoe, Sensor. Actuat. B-Chem., 63, 74 (2000).

- 73. L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, and Q. Xin, *J. Phys. Chem. B.*, 109, 8774 (2005).
- 74. N.-G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, and S. H. Chang, D.-K. Kim, J. Van de Lagemaat, K. D. Benkstein, and A. J. Frank, *Langmuir*, **20**, 4246 (2004).
- D. Kiinobe, Y. Makari, T. Kitamura, Y. Wada, and S. Yanagida, J. Phys. Chem. B., 109, 17892 (2005).
- S. Chappel, S.-G. Chen, and A. Zaban, *Langmuir*, 18, 3336 (2002).
- S. D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Ar– endse, K. Brooks, and M. Grätzel, *Chem. Mater.*, 10, 2419 (1998).
- 78. F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, Michael Grätzel, D. Gal, S. Ruhle, and D. Cahen, *J. Phys. Chem. B.*, 105, 6347 (2001).
- K. Sayama, H. Sugihara, and H. Arakawa, *Chem. Mater.*, 10, 3825 (1998).
- X. Ai, J. Guo, N. A. Anderson, and T. Lian, J. Phys. Chem. B., 108, 12795 (2004).
- H. Miyake and H. Kozuka, J. Phys. Chem. B., 109, 17951 (2005).